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Abstract. We survey mathematical developments in the inverse method of
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Calderón’s problem from Calderón’s pioneer contribution [23]. We concentrate
this article around the topic of complex geometrical optics solutions that have led
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1. Introduction

In 1980 A. P. Calderón published a short paper entitled “On an inverse boundary
value problem” [23]. This pioneer contribution motivated many developments in
inverse problems, in particular in the construction of “complex geometrical optics”
solutions of partial differential equations to solve several inverse problems. We survey
some these developments in this paper. The problem that Calderón considered was
whether one can determine the electrical conductivity of a medium by making voltage
and current measurements at the boundary of the medium. This inverse method
is known as Electrical Impedance Tomography (EIT). Calderón was motivated by oil
prospection. In the 40’s he worked as an engineer for Yacimientos Petroĺıferos Fiscales
(YPF), the state oil company of Argentina, and he thought about this problem then
although he did not publish his results until many years later. For use of electrical
methods in geophysical prospection see [147]. Parenthetically Calderón said in his
speech accepting the “Doctor Honoris Causa” of the Universidad Autónoma de Madrid
that his work at YPF had been very interesting but he was not well treated there;
he would have stayed at YPF otherwise [24]. It goes without saying that the bad
treatment of Calderón by YPF was very fortunate for Mathematics!

EIT also arises in medical imaging given that human organs and tissues have quite
different conductivities [71]. One exciting potential application is the early diagnosis
of breast cancer [149]. The conductivity of a malignant breast tumor is typically
0.2 mho which is significantly higher than normal tissue which has been typically
measured at 0.03 mho. Another application is to monitor pulmonary functions [62].
See the book [52] and the issue of Physiological Measurement [53] for other medical
imaging applications of EIT. This inverse method has also been used to detect leaks
from buried pipes [70].

We now describe more precisely the mathematical problem.
Let Ω ⊆ Rn be a bounded domain with smooth boundary (many of the results

we will describe are valid for domains with Lipschitz boundaries). The electrical
conductivity of Ω is represented by a bounded and positive function γ(x). In the
absence of sinks or sources of current the equation for the potential is given by

∇ · (γ∇u) = 0 in Ω (1)

since, by Ohm’s law, γ∇u represents the current flux.
Given a potential f ∈ H

1
2 (∂Ω) on the boundary the induced potential u ∈ H1(Ω)

solves the Dirichlet problem

∇ · (γ∇u) = 0 in Ω,
u
∣∣
∂Ω

= f.
(2)

The Dirichlet to Neumann map, or voltage to current map, is given by

Λγ(f) =

(
γ
∂u

∂ν

) ∣∣∣
∂Ω

(3)

where ν denotes the unit outer normal to ∂Ω.
The inverse problem is to determine γ knowing Λγ . It is difficult to find a

systematic way of prescribing voltage measurements at the boundary to be able to
find the conductivity. Calderón took instead a different route.

Using the divergence theorem we have

Qγ(f) :=

∫

Ω

γ|∇u|2dx =

∫

∂Ω

Λγ(f)f dS (4)
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where dS denotes surface measure and u is the solution of (2). In other words Qγ(f)
is the quadratic form associated to the linear map Λγ(f), and to know Λγ(f) or Qγ(f)

for all f ∈ H
1
2 (∂Ω) is equivalent. Qγ(f) measures the energy needed to maintain the

potential f at the boundary. Calderón’s point of view is that if one looks at Qγ(f)
the problem is changed to finding enough solutions u ∈ H1(Ω) of the equation (1)
in order to find γ in the interior. We will explain this approach further in the next
section where we study the linearization of the map

γ
Q−−−−−→Qγ . (5)

Here we consider Qγ as the bilinear form associated to the quadratic form (4).
In section 2 we describe Calderón’s paper and how he used complex exponentials

to prove that the linearization of (5) is injective at constant conductivities. He also
gave an approximation formula to reconstruct a conductivity which is, a priori, close
to a constant conductivity. In section 3 we give an application of Calderón’s method to
determine cavities and inclusions. In section 4 we describe results about uniqueness,
stability and reconstruction, for the boundary values of a conductivity and its normal
derivative.

In section 5 we describe the construction by Sylvester and Uhlmann [132], [131]
of complex geometrical optics solutions for the Schrödinger equation associated to
a bounded potential. These solutions behave like Calderón’s complex exponential
solutions for large complex frequencies. In section 6 we use these solutions to
prove, in dimension n ≥ 3, a global identifiability result, stability estimates and a
reconstruction method for the inverse problem. We also describe an extension of the
identifiability result to non-linear conductivities [124] and give other applications of
complex geometrical optics solutions.

In section 7 we consider the partial data problem, that is the case when the DN
map is measured on a part of the boundary. We describe the results of [75] for the
non-linear problem in dimension three or larger. This uses a larger class of CGO
solutions, having a non-linear phase function that are constructed using Carleman
estimates. We also review the article [29] for the linearized problem with partial data.

In section 8 we consider the two dimensional case. In particular we describe
briefly the recent work of Astala and Päivärinta proving uniqueness for bounded
measurable coefficients, and the work of Bukhgeim proving uniqueness for a potential
from Cauchy data associated to the Schrödinger equation. Finally we describe the
work of Imanuvilov, Uhlmann and Yamamoto on the partial data problem [59].

Sections 2-8 deal with the case of isotropic conductivities. In section 9 we consider
the case of anisotropic conductivities, i.e. the conductivity depends also on direction.
In two dimensions that there has been substantial progress in the understanding of
anisotropic problems since one can usually reduce the problem to the isotropic case
by using isothermal coordinates. In dimension three the problem as pointed out in
[85] is of geometric nature. We review the results of [83], [31].

In section 10 we describe a connection between Calderón’ problems and the
problem of recovering the sound speed of a medium from the travel time between
boundary points. Finally in section 11 we discuss the ideas of transformation optics

and invisibility applied to the case of electrostatics.
We end the introduction by mentioning that we don’t discuss several other

important developments in EIT including the work of Borcea et al on discrete resistors
networks and the approximation to the continuous case [17] and also the case when
the boundary is unknown [78]. We concentrate mainly in the applications involving
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complex geometrical optics solutions. For other reviews of EIT see [16], [48], [27] and
[140].

2. Calderón’s paper

Calderón proved in [23] that the map Q is analytic. The Fréchet derivative of Q at
γ = γ0 in the direction h is given by

dQ|γ=γ0(h)(f, g) =

∫

Ω

h∇u · ∇v dx (6)

where u, v ∈ H1(Ω) solve
{ ∇ · (γ0∇u) = ∇ · (γ0∇v) = 0 in Ω

u
∣∣∣
∂Ω

= f ∈ H
1
2 (∂Ω), v

∣∣∣
∂Ω

= g ∈ H
1
2 (∂Ω).

(7)

So the linearized map is injective if the products of H1(Ω) solutions of ∇· (γ0∇u) = 0
is dense in, say, L2(Ω).

Calderón proved injectivity of the linearized map in the case γ0 = constant, which
we assume for simplicity to be the constant function 1. The question is reduced to
whether the product of gradients of harmonic functions is dense in, say, L2(Ω).

Calderón took the following harmonic functions

u = ex·ρ, v = e−x·ρ (8)

where ρ ∈ Cn with

ρ · ρ = 0. (9)

We remark that the condition (9) is equivalent to the following

ρ =
η + ik

2
, η, k ∈ Rn, (10)

|η| = |k|, η · k = 0.

Then plugging the solutions (8) into (6) we obtain if dQ|γ0=1(h) = 0

|k|2(χΩh)
∧(k) = 0 ∀ k ∈ Rn

where χΩ denotes the characteristic function of Ω and ∧ denotes Fourier transform.
Then we conclude by the Fourier inversion formula that h = 0 on Ω. However, one
cannot apply the implicit function theorem to conclude that γ is invertible near a
constant since conditions on the range of Q that would allow use of the implicit
function theorem are either false or not known.

Calderón also observed that using the solutions (8) one can find an approximation
for the conductivity γ if

γ = 1 + h (11)

and h small enough in the L∞ norm.
We are given

Gγ = Qγ

(
ex·ρ

∣∣∣
∂Ω
, e−x·ρ

∣∣∣
∂Ω

)
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with ρ ∈ Cn as in (2.4). Now

Gγ =

∫

Ω

(1 + h)∇u · ∇v dx (12)

+

∫

Ω

h(∇δu · ∇v + ∇u · ∇δv) dx

+

∫

Ω

(1 + h)∇δu · ∇δv dx

with u, v as in (8) and

∇ · (γ∇(u+ δu)) = ∇ · (γ∇(v + δv)) = 0 in Ω

δu
∣∣∣
∂Ω

= δv
∣∣∣
∂Ω

= 0.
(13)

Now standard elliptic estimates applied to (13) show that

‖∇δu‖L2(Ω), ‖∇δv‖L2(Ω) ≤ C‖h‖L∞(Ω)|k|e
1
2
r|k| (14)

for some C > 0 where r denotes the radius of the smallest ball containing Ω.
Plugging u, v into (2.7) we obtain

χ̂Ωγ(k) = −2
Gγ
|k|2 +R(k) = F̂ (k) +R(k) (15)

where F is determined by Gγ and therefore known. Using (14), we can show that
R(k) satisfies the estimate

|R(k)| ≤ C‖h‖2
L∞(Ω)e

r|k|. (16)

In other words we know χ̂Ωγ(k) up to a term that is small for k small enough.
More precisely, let 1 < α < 2. Then for

|k| ≤ 2 − α

r
log

1

‖h‖L∞

=: σ (17)

we have

|R(k)| ≤ C‖h‖αL∞(Ω) (18)

for some C > 0.
We take η̂ a C∞ cut-off so that η̂(0) = 1, supp η̂(k) ⊂ {k ∈ Rn, |k| ≤ 1} and

ησ(x) = σnη(σx). Then we obtain

χ̂Ωγ(k)η̂

(
k

σ

)
=

−2Gγγ

|k|2 η̂

(
k

σ

)
+R(k)η̂

(
k

σ

)
.

Using this we get the following estimate

|l(x)| ≤ C‖h‖αL∞(Ω)

[
log

1

‖h‖L∞(Ω)

]n
(19)

where l(x) = (χΩγ ∗ ησ)(x) − (F ∗ ησ)(x). Formula (19) gives then an approximation
to the smoothed out conductivity, χΩγ ∗ ησ, for h sufficiently small.

This approximation estimate of Calderón and modifications of it have been tried
out numerically [60] .

Another quite different inverse problems where these exponential solutions have
been used is to the inverse transport problem with angularly averaged measurements
[10].

This estimate uses the harmonic exponentials for low frequencies. In section 4 we
consider high (complex) frequency solutions of the conductivity equation

Lγ = ∇ · (γ∇u) = 0.
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3. Determination of Cavities and Inclusions

Calderón’s exponential harmonic functions have the property that they grow
exponentially in a direction where the inner product of the real part of the complex
phase with the direction is strictly positive, they are exponentially decaying if this
inner product is negative and oscillatory if the inner product is zero. This was
exploited by Ikehata in [56], [57] to give a reconstruction procedure from the DN
map of a cavity D with strongly convex C2 boundary ∂D inside a conductive medium
Ω with conductivity 1 such that Ω \ D is connected. We sketch some of the details
here. We define the DN map ΛD by

ΛD(f) :=
∂u(f)

∂ν
|∂Ω, (20)

where u(f) ∈ H2(Ω) is the solution to




∆u = 0 in Ω \D,
∂u
∂ν |∂D = 0,

u|∂Ω = f ∈ H3/2(∂Ω)

(21)

and ν is the unit normal of ∂D. If D = ∅, we denote ΛD by Λ0. Let ω, ω⊥ be unit
real vectors perpendicular to each other. For τ > 0, consider the Calderón harmonic
functions

v(x, τ, ω, ω⊥) = e−tτeτx·(ω+iω⊥). (22)

Note that this function grows exponentially in the half space x · ω > t and decays
exponentially in the half space x · ω < t. For t ∈ R, define the indicator function by

Iω,ω⊥(τ, t) :=

∫

∂Ω

((ΛD − Λ0)v|∂Ω)v|∂Ω dS. (23)

We also define the support function hD(ω) of D by

hD(ω) := supx∈Dx · ω. (24)

Ikehata characterizes the support function in terms of the indicator function. More
precisely we have

hD(ω) − t = lim
τ→∞

Iω,ω⊥(τ, t)

2τ
. (25)

Hence, by taking many ω’s, we can recover the shape of D. See [56], [58] for more
details and references, including numerical implementation of this method.

4. Boundary Determination

Kohn and Vogelius proved the following identifiability result at the boundary [81].

Theorem 4.1 Let γi ∈ C∞(Ω) be strictly positive. Assume Λγ1 = Λγ2 . Then

∂αγ1

∣∣∣
∂Ω

= ∂αγ2

∣∣∣
∂Ω
, ∀|α|.
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This settled the identifiability question for the non-linear problem in the real-
analytic category. They extended the identifiability result to piecewise real-analytic
conductivities in [82].

Sketch of proof of Theorem 4.1. We outline an alternative proof to the one given by
Kohn and Vogelius of 4.1. In the case γ ∈ C∞(Ω) we know, by another result of
Calderón [25], that Λγ is a classical pseudodifferential operator of order 1. Let (x′, xn)
be coordinates near a point x0 ∈ ∂Ω so that the boundary is given by xn = 0. The
function λγ(x

′, ξ′) denotes the full symbol of Λγ in these coordinates. It was proved
in [133] that

λγ(x
′, ξ′) = γ(x′, 0)|ξ′| + a0(x

′, ξ′) + r(x′, ξ′) (26)

where a0(x
′, ξ′) is homogeneous of degree 0 in ξ′ and is determined by the normal

derivative of γ at the boundary and tangential derivatives of γ at the boundary.

The term r(x′, ξ′) is a classical symbol of order −1. Then γ
∣∣∣
∂Ω

is determined by the

principal symbol of Λγ and ∂γ
∂xn

∣∣∣
∂Ω

by the principal symbol and the term homogeneous

of degree 0 in the expansion of the full symbol of Λγ . More generally the higher order
normal derivatives of the conductivity at the boundary can be determined recursively.
In [85] one can find a more general approach to the calculation of the full symbol of
the Dirichlet to Neumann map that applies to more general situations.

We note that this gives also a reconstruction procedure. We first can reconstruct

γ at the boundary since γ
∣∣∣
∂Ω

|ξ′| is the principal symbol of Λγ (see (26)). In other

words in coordinates (x′, xn) so that ∂Ω is locally given by xn = 0 we have

γ(x′, 0)a(x′) = lim
s→∞

e−is<x
′,ω′> 1

s
Λγ(e

is<x′,ω′>a(x′))

with ω′ ∈ Rn−1 and |ω′| = 1 and a a smooth and compactly supported function.

In a similar fashion, using (26), one can find ∂γ
∂ν

∣∣∣
∂Ω

by computing the principal

symbol of (Λγ − γ
∣∣
∂Ω

Λ1) where Λ1 denotes the Dirichlet to Neumann map associated
to the conductivity 1. The other terms can be reconstructed recursively in a similar
fashion.

We also observe, by taking an appropriate cut-off function a above, that this
procedure is local, that is we only need to know the DN map in an open set of the
boundary to determine the Taylor series of the conductivity in that open set.

This method also leads to stability estimates at the boundary [133].

Theorem 4.2 Suppose that γ1 and γ2 are C∞ functions on Ω ⊆ Rn satisfying

i) 0 < 1
E ≤ γi ≤ E

ii) ‖γi‖C2(Ω) ≤ E

Given any 0 < σ < 1
n+1 , there exists C = C(Ω, E, n, σ) such that

‖γ1 − γ2‖L∞(∂Ω) ≤ C‖Λγ1 − Λγ2‖ 1
2
,−1

2

(27)

and ∥∥∥∥
∂γ1

∂ν
− ∂γ2

∂ν

∥∥∥∥
L∞(∂Ω)

≤ C‖Λγ1 − Λγ2‖σ1
2
,−1

2

. (28)
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This result implies that we don’t need the conductivity to be smooth to determine
the conductivity and its normal derivative at the boundary. In the case γ is continuous
on Ω we can determine γ at the boundary by using the stability estimate i) above and
an approximation argument. In the case that γ ∈ C1(Ω) we can determine, knowing
the DN map, γ and its normal derivative at the boundary using the estimate ii)
above and an approximation argument. For other results and approaches to boundary
determination of the conductivity see [4], [18], [92], [97]. In one way or another
the boundary determination involves testing the DN map against highly oscillatory
functions at the boundary.

5. Complex geometrical optics solutions with a linear phase

Motivated by Calderón exponential solutions described in section 2, Sylvester and
Uhlmann [131, 132] constructed in dimension n ≥ 2 complex geometrical optics (CGO)
solutions of the conductivity equation for C2 conductivities that behave like Calderón
exponential solutions for large frequencies. This can be reduced to constructing
solutions in the whole space (by extending γ = 1 outside a large ball containing Ω)
for the Schrödinger equation with potential. We describe this more precisely below.

Let γ ∈ C2(Rn), γ strictly positive in Rn and γ = 1 for |x| ≥ R, R > 0. Let
Lγu = ∇ · γ∇u. Then we have

γ−
1
2Lγ(γ

− 1
2 ) = ∆ − q (29)

where

q =
∆
√
γ

√
γ
. (30)

Therefore, to construct solutions of Lγu = 0 in Rn it is enough to construct solutions
of the Schrödinger equation (∆ − q)u = 0 with q of the form (30). The next result
proven in [131, 132] states the existence of complex geometrical optics solutions for the
Schrödinger equation associated to any bounded and compactly supported potential.

Theorem 5.1 Let q ∈ L∞(Rn), n ≥ 2, with q(x) = 0 for |x| ≥ R > 0. Let
−1 < δ < 0. There exists ǫ(δ) and such that for every ρ ∈ Cn satisfying

ρ · ρ = 0

and
‖(1 + |x|2)1/2q‖L∞(Rn) + 1

|ρ| ≤ ǫ

there exists a unique solution to

(∆ − q)u = 0

of the form

u = ex·ρ(1 + ψq(x, ρ)) (31)

with ψq(·, ρ) ∈ L2
δ(R

n). Moreover ψq(·, ρ) ∈ H2
δ (R

n) and for 0 ≤ s ≤ 2 there exists
C = C(n, s, δ) > 0 such that

‖ψq(·, ρ)‖Hs
δ
≤ C

|ρ|1−s . (32)
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Here

L2
δ(R

n) = {f ;

∫
(1 + |x|2)δ|f(x)|2dx <∞}

with the norm given by ‖f‖2
L2

δ

=
∫
(1 + |x|2)δ|f(x)|2dx and Hm

δ (Rn) denotes the

corresponding Sobolev space. Note that for large |ρ| these solutions behave like
Calderón’s exponential solutions ex·ρ. The equation for ψq is given by

(∆ + 2ρ · ∇)ψq = q(1 + ψq). (33)

The equation (33) is solved by constructing an inverse for (∆ + 2ρ · ∇) and solving
the integral equation

ψq = (∆ + 2ρ · ∇)−1(q(1 + ψq)). (34)

Lemma 5.2 Let −1 < δ < 0, 0 ≤ s ≤ 1. Let ρ ∈ Cn − 0, ρ · ρ = 0. Let
f ∈ L2

δ+1(R
n). Then there exists a unique solution uρ ∈ L2

δ(R
n) of the equation

∆ρuρ := (∆ + 2ρ · ∇)uρ = f. (35)

Moreover uρ ∈ H2
δ (R

n) and

‖uρ‖Hs
δ
(Rn) ≤

Cs,δ‖f‖L2
δ+1

|ρ|s−1

for 0 ≤ s ≤ 1 and for some constant Cs,δ > 0.

The integral equation (33) can then be solved in L2
δ(R

n) for large |ρ| since

(I − (∆ + 2ρ · ∇)−1q)ψq = (∆ + 2ρ · ∇)−1q

and ‖(∆ + 2ρ · ∇)−1q‖L2
δ
→L2

δ
≤ C

|ρ| for some C > 0 where ‖ · ‖L2
δ
→L2

δ
denotes the

operator norm between L2
δ(R

n) and L2
δ(R

n). We will not give details of the proof of
Lemma 5.2 here. We refer to the papers [131, 132] .

We note that there has been other approaches to construct CGO solutions for
the Schrödinger equation [65], [47]. These constructions don’t give uniqueness of the
CGO solutions that are used in the reconstruction method of the conductivity from
the DN map (see section 6).

If 0 is not a Dirichlet eigenvalue for the Schrödinger equation we can also define
the DN map

Λq(f) =
∂u

∂ν
|∂Ω

where u solves
(∆ − q)u = 0; u|∂Ω = f.

More generally we can define the set of Cauchy data for the Schrödinger equation.
Let q ∈ L∞(Ω). We define the Cauchy data as the set

Cq =

{(
u
∣∣∣
∂Ω
,
∂u

∂ν

∣∣∣
∂Ω

)}
, (36)

where u ∈ H1(Ω) is a solution of

(∆ − q)u = 0 in Ω. (37)

We have Cq ⊆ H
1
2 (∂Ω) ×H− 1

2 (∂Ω). If 0 is not a Dirichlet eigenvalue of ∆ − q, then
in fact Cq is a graph, namely

Cq = {(f,Λq(f)) ∈ H
1
2 (∂Ω) ×H− 1

2 (∂Ω)}.
Complex geometrical optics for first order equations and systems under different

regularity assumptions of the coefficients have been constructed in [98], [101], [137],
[72], [113], [112] We refer to the article [112] for the more up to date developments on
this topic and the references given there.
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6. The Calderón problem in dimension n ≥ 3

In this section we summarize some of the basic theoretical results for Calderón’s
problem in dimension three or higher.

6.1. Uniqueness

The identifiability question was resolved in [131] for smooth enough conductivities.
The result is

Theorem 6.1 Let γi ∈ C2(Ω), γi strictly positive, i = 1, 2. If Λγ1 = Λγ2 then γ1 = γ2

in Ω.

In dimension n ≥ 3 this result is a consequence of a more general result. Let
q ∈ L∞(Ω).

Theorem 6.2 Let qi ∈ L∞(Ω), i = 1, 2. Assume Cq1 = Cq2 , then q1 = q2.

We now show that Theorem 6.2 implies Theorem 6.1.
Using (29) we have

Cqi
=

{(
f,

(
1

2
γ
− 1

2

i

∣∣∣
∂Ω

∂γi
∂ν

∣∣∣
∂Ω

)
f + γ

− 1
2

i

∣∣∣
∂Ω

Λγi

(
γ−

1
2

∣∣∣
∂Ω
f
))

, f ∈ H
1
2 (∂Ω)

}
.

Then we conclude Cq1 = Cq2 using the the boundary identifiability result of Kohn and
Vogelius [81] and its extension [133].

Proof of Theorem 6.2. Let ui ∈ H1(Ω) be a solution of

(∆ − qi)ui = 0 in Ω, i = 1, 2.

Then using the divergence theorem we have
∫

Ω

(q1 − q2)u1u2dx =

∫

∂Ω

(
∂u1

∂ν
u2 − u1

∂u2

∂ν

)
dS. (38)

Now it is easy to prove that if Cq1 = Cq2 then the LHS of (38) is zero
∫

Ω

(q1 − q2)u1u2dx = 0. (39)

Now we extend qi = 0 in Ωc. We take solutions of (∆ − qi)ui = 0 in Rn of the
form

ui = ex·ρi(1 + ψqi
(x, ρi)), i = 1, 2 (40)

with |ρi| large, i = 1, 2, with

ρ1 =
η

2
+ i

(
k + l

2

)
(41)

ρ2 = −η
2

+ i

(
k − l

2

)

and η, k, l ∈ Rn such that

η · k = k · l = η · l = 0 (42)

|η|2 = |k|2 + |l|2.
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Condition (6.5) guarantees that ρi · ρi = 0, i = 2. Substituting (6.3) into (6.2) we
conclude

̂(q1 − q2)(−k) = −
∫

Ω

eix·k(q1 − q2)(ψq1 + ψq2 + ψq1ψq2)dx. (43)

Now ‖ψqi
‖L2(Ω) ≤ C

|ρi|
. Therefore by taking |l| → ∞ we obtain

̂χΩ(q1 − q2)(k) = 0 ∀ k ∈ Rn

concluding the proof.
Theorem 6.1 has been extended to conductivities having 3/2 derivatives in some

sense in [106], [19]. Uniqueness for conormal conductivies in C1+ǫ was shown in [41].
It is an open problem whether uniqueness holds in dimension n ≥ 3 for Lipschitz or
less regular conductivities.

Theorem 6.2 was extended to potentials in Ln/2 and small potentials in the
Fefferman-Phong class in [26]. For conormal potentials with singularities not in Ln/2,
for instance almost a delta function of an hypersurface, uniqueness was shown in [41].

6.2. Non-linear conductivities

We now give an extension of this result to conductivities that depend of the voltage.
Let γ(x, t) be a function with domain Ω × R. Let α be such that 0 < α < 1. We

assume

γ ∈ C1,α(Ω × [−T, T ]), ∀ T, (44)

γ(x, t) > 0, ∀ (x, t) ∈ Ω × R. (45)

Given f ∈ C2,α(∂Ω), there exists a unique solution of the Dirichlet problem (see [38])

∇ · (γ(x, u)∇u) = 0 in Ω, (46)

u
∣∣∣
∂Ω

= f.

Then the Dirichlet to Neumann map is defined by

Λγ(f) = γ(x, f)
∣∣∣
∂Ω

∂u

∂ν

∣∣∣
∂Ω

(47)

where u is a solution to (6.9). Sun [124] proved the following result.

Theorem 6.3 Let n ≥ 3. Assume γi,∈ C1,1(Ω × [−T, T ]) ∀ T > 0 , i = 1, 2, and
Λγ1 = Λγ2 . Then γ1(x, t) = γ2(x, t) on Ω × R.

The main idea is to linearize the Dirichlet to Neumann map at constant boundary
data equal to the parameter t (then the solution of (6.9) is equal to t). Isakov [64]
was the first to use a linearization technique to study an inverse parabolic problems
associated to non-linear equations. The case of the Dirichlet to Neumann map
associated to the Schrödinger equation with a non-linear potential was considered
in [58] under some assumptions on the potential. We note that, in contrast to the
linear case, one cannot reduce the study of the inverse problem of the conductivity
equation (46) to the Schrödinger equation with a non-linear potential since a reduction
from the conductivity equation to the Schrödinger equation is not possible in this case.
The main technical lemma in the proof of Theorem 6.3 is
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Lemma 6.4 Let γ(x, t) be as in (44) and (45). Let 1 < p < ∞, 0 < α < 1. Let us
define

γt(x) = γ(x, t). (48)

Then for any f ∈ C2,α(∂Ω), t ∈ R

lim
s→0

‖1

s
Λγ(t+ sf) − Λγt(f)‖

W
1− 1

p
,p

(∂Ω)
= 0. (49)

The proof of Theorem 6.3 follows immediately from the lemma. Namely (6.12)
and the hypotheses Λγ1 = Λγ2 ⇒ Λγt

1
= Λγt

2
for all t ∈ R. Then using the linear

result, Theorem 6.1, we conclude that γt1 = γt2 proving the result.
We remark that the reduction from the non-linear problem to the linear is also

valid in the two dimensional case [66]. Using the result of Astala and Päivärinta [8],
which is reviewed in section 8, one can extend Theorem 6.3 to L∞(Ω) conductivities
in the two dimensional case.

There are several open questions when the conductivity also depends on ∇u, see
[126] for a survey of results and open problems in this direction.

6.3. Other applications

We give a short list of other applications to inverse problems using the CGO solutions
described above for the Schrödinger equation.

• Quantum Scattering. In dimension n ≥ 3 and in the case of a compactly
supported electric potential, uniqueness for the fixed energy scattering problem
was proven in [92], [102], [110]. In the earlier paper [103] this was done for
small potentials. For compactly supported potentials, knowledge of the scattering
amplitude at fixed energy is equivalent to knowing the Dirichlet-to-Neumann map
for the Schrödinger equation measured on the boundary of a large ball containing
the support of the potential (see [139], [141] for an account). Then Theorem 6.2
implies the result. Melrose [88] suggested a related proof that uses the density
of products of scattering solutions. Applications of CGO solutions to the 3-body
problem were given in [142].

• Optics. The DN map associated to the Helmholtz equation −∆+k2n(x) with an
isotropic index of refraction n determines uniquely a bounded index of refraction
in dimension n ≥ 3.

• Optical tomography in the diffusion approximation. In this case we have
∇·D(x)∇u−σa(x)u− iωu = 0 in Ω where u represents the density of photons, D
the diffusion coefficient, and σa the optical absorption. Using the result of [131]
one can show in dimension three or higher that if ω 6= 0 one can recover both D
and σa from the corresponding DN map. If ω = 0 then one can recover one of
the two parameters.

• Electromagnetics. For Maxwell’s equations the analog of the DN map is the
admittance map that maps the tangential component of the electric field to
the tangential component of the magnetic field [122]. The admittance map
for isotropic Maxwell’s equations determines uniquely the isotropic electric
permittivity, magnetic permeability and conductivity [104]. This system can in
fact be reduced to the Schrödinger equation ∆ −Q with Q an 8 × 8 system and
∆ the Laplacian times the identity matrix [105].
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• Determination of Inclusions and Obstacles. The CGO solutions constructed in
Theorem 5.1 have been applied to determine inclusions for Helmholtz equations
in [57] and Maxwell’s equations in [148] using the enclosure method [57].

6.4. Stability

The arguments used in the proofs of Theorems 6.1, 6.2, 4.1 can be pushed further to
prove the following stability estimates proven in [3].

Theorem 6.5 Let n ≥ 3. Suppose that s > n
2 and that γ1 and γ2 are C∞

conductivities on Ω ⊆ Rn satisfying

i) 0 < 1
E ≤ γj ≤ E, j = 1, 2.

ii) ‖γj‖Hs+2(Ω) ≤ E, j = 1, 2.

Then there exists C = C(Ω, E, n, s) and 0 < σ < 1 (σ = σ(n, s)) such that

‖γ1−γ2‖L∞(Ω) ≤ C
(
| log ‖Λγ1 −Λγ2‖ 1

2
,−1

2

|−σ+‖Λγ1 −Λγ2‖ 1
2
,−1

2

)
(50)

where ‖ ‖ 1
2
,−1

2

denotes the operator norm as operators from H
1
2 (∂Ω) to H− 1

2 (∂Ω).

Notice that this is logarithmic type stability estimates indicates that the problem
is severely ill-posed. Mandache [87] has shown that this estimate is optimal up to to
the value of the exponent. There is the question of whether under some additional a-
priori condition one can improve this logarithmic type stability estimate. Alessandrini
and Vessella [6] have shown that this is indeed the case and one has a Lipschitz type
stability estimate if the conductivity is piecewise constant with jumps on a finite
number of domains. Rondi [111] has subsequently shown that the constant in the
estimate grows exponentially with the number of domains.

It is conjectured, and this is supported by numerical experiments, that the
stability estimate should be “better” near the boundary and gets increasingly worse
as one penetrated deeper into the domain (Theorem 4.1 shows that at the boundary
we have Lipschitz type stability estimate.) This type of depth dependence stability
estimate has been proved in [95] for the case of some electrical inclusions.

For a recent review of stability issues in EIT see [5].
Theorem 6.5 is a consequence of Theorem 4.2 and the following result.

Theorem 6.6 Assume 0 is not a Dirichlet eigenvalue of ∆ − qi, i = 1, 2. Let s > n
2 ,

n ≥ 3 and

‖qj‖Hs(Ω) ≤M.

Then there exists C = C(Ω,M, n, s) and 0 < σ < 1 (σ = σ(n, s)) such that

‖q1−q2‖H−1(Ω) ≤ C
(
| log ‖Λq1 −Λq2‖ 1

2
,−1

2

|−σ+‖Λq1 −Λq2‖ 1
2
,−1

2

)
.(51)

6.5. Reconstruction

The complex geometrical optics solution of Theorems 6.1 and 6.2 were also used by
A. Nachman [92] and R. Novikov [102] to give a reconstruction procedure of the
conductivity from Λγ .

As we have already noticed in section 4 we can reconstruct the conductivity and
its normal derivative from the DN map. Therefore if we know Λγ we can determine
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Λq. We will then show how to reconstruct q from Λq. Once this is done, to find
√
γ,

we solve the problem

∆u− qu = 0 in Ω, (52)

u|∂Ω =
√
γ
∣∣∣
∂Ω
.

Let q1 = q, q2 = 0 in formula (38). Then we have∫

Ω

quvdx =

∫

∂Ω

(Λq − Λ0)
(
v
∣∣
∂Ω

)
u
∣∣
∂Ω
dS (53)

where u, v ∈ H1(Ω) solve∆u− qu = 0, ∆v = 0 in Ω. Here Λ0 denotes the Dirichlet to
Neumann map associated to the potential q = 0. We choose ρi, i = 1, 2 as in (42) and
(6.5).

Take v = ex·ρ1 , u := uρ = ex·ρ2(1 + ψq(x, ρ2)) as in Theorem 5.1. By taking
|l| → ∞ in (53) we conclude

q̂(−k) = lim
|l|→∞

∫

∂Ω

(Λq − Λ0)(e
x·ρ1
∣∣∣
∂Ω

)uρ

∣∣∣
∂Ω
dS.

So the problem is then to recover the boundary values of the solutions uρ from Λq.

The idea is to find uρ

∣∣∣
∂Ω

by looking at the exterior problem. Namely by extending

q = 0 outside Ω, uρ solves

∆uρ = 0 in Rn − Ω (54)

∂uρ
∂ν

∣∣∣
∂Ω

= Λq(uρ

∣∣∣
∂Ω

).

Also note that

e−x·ρ2uρ − 1 ∈ L2
δ(R

n). (55)

Let ρ ∈ Cn− 0 with ρ · ρ = 0. Let Gρ(x, y) ∈ D′(Rn×Rn) denote the Schwartz kernel
of the operator ∆−1

ρ . Then we have that

gρ(x) = ex·ρGρ(x) (56)

is a Green’s kernel for ∆, namely

∆gρ = δ0. (57)

We write the solution of (6.19) and (55) in terms of single and double layer potentials
using this Green’s kernel. This is also called Faddeev Green’s kernel [35] who
considered it in the context of scattering theory.

We define the single and double layer potentials

Sρf(x) =

∫

∂Ω

gρ(x − y)f(y)dSy, x ∈ Rn − Ω, (58)

Dρf(x) =

∫

∂Ω

∂gρ
∂ν

(x− y)f(y)dSy, x ∈ Rn − Ω (59)

Bρf(x) = p.v.

∫

∂Ω

∂gρ
∂ν

(x− y)f(y)dSy, x ∈ ∂Ω. (60)

Nachman showed that fρ = uρ

∣∣∣
∂Ω

is a solution of the integral equation

fρ = ex·ρ − (SρΛq −Bρ −
1

2
I)fρ. (61)

Moreover (61) is an inhomogeneous integral equation of Fredholm type for fρ and

it has a unique solution in H
3
2 (∂Ω). The uniqueness of the homogeneous equation

follows from the uniqueness of the CGO solutions in Theorem 6.2.
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7. The Partial Data Problem

In several applications in EIT one can only measure currents and voltages on part of
the boundary. Substantial progress has been made recently on the problem of whether
one can determine the conductivity in the interior by measuring the DN map on part
of the boundary. We review here the articles [75] and [29].

The paper [22] used the method of Carleman estimates with a linear weight to
prove that, roughly speaking, knowledge of the DN map in “half” of the boundary is
enough to determine uniquely a C2 conductivity. The regularity assumption on the
conductivity was relaxed to C1+ǫ, ǫ > 0 in [76]. Stability estimates for the uniqueness
result of [22] were given in [49]. Stability estimates for the magnetic Schrödinger
operator with partial data in the setting of [22] can be found in [138].

The result [22] was substantially improved in [75]. The latter paper contains a
global identifiability result where it is assumed that the DN map is measured on any
open subset of the boundary of a strictly convex domain for all functions supported,
roughly, on the complement. We state the theorem more precisely below. The key
new ingredient is the construction of a larger class of CGO solutions than the ones
considered in section 5.

Let x0 ∈ Rn \ ch (Ω), where ch (Ω) denotes the convex hull of Ω. Define the front
and the back faces of ∂Ω by

F (x0) = {x ∈ ∂Ω; (x − x0) · ν ≤ 0}, B(x0) = {x ∈ ∂Ω; (x− x0) · ν > 0}.
The main result of [75] is the following:

Theorem 7.1 Let n > 2. With Ω, x0, F (x0), B(x0) defined as above, let q1, q2 ∈
L∞(Ω) be two potentials and assume that there exist open neighborhoods F̃ , B̃ ⊂ ∂Ω
of F (x0) and B(x0) ∪ {x ∈ ∂Ω; (x− x0) · ν = 0} respectively, such that

Λq1u = Λq2u in F̃ , for all u ∈ H
1
2 (∂Ω) ∩ E

′(B̃). (62)

Then q1 = q2.

Here E
′(B̃) denotes the space of compactly supported distributions in B̃.

The proof of this result uses Carleman estimates for the Laplacian with limiting
Carleman weights (LCW). The Carleman estimates allow one to construct, for large
τ , a larger class of CGO solutions for the Schrödinger equation than previously used.
These have the form

u = eτ(φ+iψ)(a+ r), (63)

where ∇φ · ∇ψ = 0, |∇φ|2 = |∇ψ|2 and φ is the LCW. Moreover a is smooth and
non-vanishing and ‖r‖L2(Ω) = O( 1

τ ), ‖r‖H1(Ω) = O(1). Examples of LCW are the
linear phase φ(x) = x · ω, ω ∈ Sn−1, used previously, and the non-linear phase
φ(x) = ln |x − x0|, where x0 ∈ Rn \ ch (Ω) which was used in [75]. Any conformal
transformation of these would also be a LCW. Below we give a characterization of all
the LCW in Rn, n > 2, see [31]. In two dimensions any harmonic function is a LCW
[144].

The CGO solutions used in [75] are of the form

u(x, τ) = e
log |x−x0|+id(

x−x0
|x−x0|

,ω)
(a+ r) (64)

where x0 is a point outside the convex hull of Ω, ω is a unit vector and d( x−x0

|x−x0|
, ω)

denote distance. We take directions ω so that the distance function is smooth for
x ∈ Ω.
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7.1. Limiting Carleman weights

We only recall here the main ideas in the construction of the CGO solutions. We will
denote τ = 1

h in order to use the standard semiclassical notation. Let P0 = −h2∆,
where h > 0 is a small semi-classical parameter. The weighted L2-estimate

‖eφ/hu‖ ≤ C‖eφ/hP0u‖

is of course equivalent to the unweighted estimate for a conjugated operator:

‖v‖ ≤ C‖eφ/hP0e
−φ/hv‖.

The semi-classical principal symbol of P0 is p(x, ξ) = ξ2, and that of the
conjugated operator eφ/hP0e

−φ/h is

p(x, ξ + iφ′(x)) = a(x, ξ) + ib(x, ξ),

where
a(x, ξ) = ξ2 − φ′(x)2, b(x, ξ) = 2ξ · φ′(x).

Here we denote by φ′ the gradient of φ.
Write the conjugated operator as A+ iB, with A and B formally selfadjoint and

with a and b as their associated principal symbols. Then

‖(A+ iB)u‖2 = ‖Au‖2 + ‖Bu‖2 + (i[A,B]u|u).

The principal symbol of i[A,B] is h{a, b}, where {·, ·} denotes the Poisson bracket. In
order to get enough negativity to satisfy Hörmander’s solvability condition we require
that

a(x, ξ) = b(x, ξ) = 0 ⇒ {a, b} ≤ 0.

It is then indeed possible to get an a-priori estimate for the conjugated operator. We
are led to the limiting case since we need to have CGO solutions for both φ and −φ.

Definition 7.2 φ is a limiting Carleman weight (LCW) on some open set Ω if ∇φ(x)
is non-vanishing there and we have

a(x, ξ) = b(x, ξ) = 0 ⇒ {a, b}(x) = 0, x ∈ Ω.

We remark that if φ is a LCW so is −φ.
In [31] we have classified locally all the LCW in Euclidean space.

Theorem 7.3 Let Ω be an open subset of Rn, n ≥ 3. The limiting Carleman weights
in Ω are locally of the form

φ(x) = aφ0(x− x0) + b

where a ∈ R \ {0} and φ0 is one of the following functions:

〈x, ξ〉, arg〈x, ω1 + iω2〉,

log |x|, 〈x, ξ〉
|x|2 , arg

(
eiθ(x+ iξ)2

)
, log

|x+ ξ|2
|x− ξ|2

with ω1, ω2 orthogonal unit vectors, θ ∈ [0, 2π) and ξ ∈ Rn \ {0}.
As noted earlier, in two dimensions, any harmonic function with a non-vanishing

gradient is a limiting Carleman weight.
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7.2. Construction of CGO Solutions

A key ingredient in the construction of a richer family of CGO solutions is the following
Carleman estimate.

Proposition 7.4 Let φ ∈ C∞(neigh (Ω)) be an LCW, P = −h2∆ + h2q, q ∈ L∞(Ω).
Then, for u ∈ C∞(Ω), with u|∂Ω

= 0, we have

− h3

C
((φ′x · ν)eφ/h∂νu|eφ/h∂νu)∂Ω− +

h2

C
(‖eφ/hu‖2 + ‖eφ/hh∇u‖2)(65)

≤ Ch3((φ′x · ν)eφ/h∂νu|eφ/h∂νu)∂Ω+
+ ‖eφ/hPu‖2,

where norms and scalar products are in L2(Ω) unless a subscript A (like for instance
A = ∂Ω−) indicates that they should be taken in L2(A). Here

∂Ω± = {x ∈ ∂Ω; ±ν(x) · φ′(x) ≥ 0}.

The proof of existence of solutions of the form (63) follows by using the Hahn-
Banach theorem for the adjoint equation e−φ/hPeφ/hu = v.

Let φ be a LCW and write p(x, ξ+φ′(x)) = a(x, ξ)+ ib(x, ξ). Then we know that
a and b are in involution on their common zero set, and in this case it is well-known
and exploited in [32] that we can find plenty of local solutions to the Hamilton-Jacobi
system

a(x, ψ′(x)) = 0, b(x, ψ′(x)) = 0 ⇔ ψ′2 = φ′2, ψ′ · φ′ = 0 (66)

We need the following more global statement:

Proposition 7.5 Let φ ∈ C∞(neigh (Ω)) be a LCW, where Ω is a domain in Rn

and define the hypersurface G = p−1(C0) for some fixed value of C0. Assume that
each integral curve of φ′ · ∇x through a point in Ω also intersects G and that the
corresponding projection map Ω → G is proper. Then we get a solution of (66)
in C∞(Ω) by solving first g′(x)2 = φ′(x)2 on G and then defining ψ by ψ|G

= g,
φ′(x) · ∂xψ = 0. The vector fields φ′ · ∂x and ψ′ · ∂x commute.

This result will be applied with a new domain Ω that contains the original one.
Next consider the WKB-problem

P0(e
1
h

(−φ+iψ)a(x)) = e
1
h
(−φ+iψ)O(h2). (67)

The transport equation for a is of Cauchy-Riemann type along the two-dimensional
integral leaves of {φ′ · ∂x, ψ′ · ∂x}. We have solutions that are smooth and everywhere
6= 0. (See [32].)

The existence result for eφ/hPe−φ/h mentioned in one of the remarks after
Proposition 7.4 permits us to to replace the right hand side of (67) by zero; more
precisely, we can find r = O(h) in the semi-classical Sobolev space H1 equipped with
the norm ‖r‖ = ‖〈hD〉r‖, such that

P (e
1
h
(−φ+iψ)(a+ r)) = 0. (68)
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7.3. The uniqueness proof

We sketch the proof for the case that B̃ = ∂Ω. All the arguments in this section are
in dimension n > 2. The arguments are similar to those of [22] using the new CGO
solutions. Let φ be an LCW for which the constructions of section 7.2 are available.
Let q1, q2 ∈ L∞(Ω) be as in Theorem 7.1 with

Λq1(f) = Λq2(f) in ∂Ω−,ǫ0, ∀f ∈ H
1
2 (∂Ω), (69)

where

∂Ω−,ǫ0 = {x ∈ ∂Ω; ν(x) · φ′(x) < ǫ0}
∂Ω+,ǫ0 = {x ∈ ∂Ω; ν(x) · φ′(x) ≥ ǫ0}.

Let
u2 = e

1
h
(φ+iψ2)(a2 + r2)

solve
(∆ − q2)u2 = 0 in Ω,

with ‖r2‖H1 = O(h). Let u1 solve

(∆ − q1)u1 = 0 in Ω, u1|∂Ω
= u2|∂Ω

.

Then according to the assumptions in the theorem, we have ∂νu1 = ∂νu2 in ∂Ω−,ǫ0 if
ǫ0 > 0 has been fixed sufficiently small and we choose φ(x) = ln |x− x0|.

Put u = u1 − u2, q = q2 − q1, so that

(∆ − q1)u = qu2, u|∂Ω
= 0, supp (∂νu|∂Ω

) ⊂ ∂Ω+,ǫ0 . (70)

For v ∈ H1(Ω) with ∆v ∈ L2, we get from Green’s formula
∫

Ω

qu2vdx =

∫

Ω

(∆ − q1)uvdx (71)

=

∫

Ω

u (∆ − q1)vdx+

∫

∂Ω+,ǫ0

∂νuvdS.

Similarly, we choose
v = e−

1
h
(φ+iψ1)(a1 + r1),

with
(∆ − q1)v = 0.

Then ∫

Ω

qe
i
h
(ψ1+ψ2)(a2 + r2)(a1 + r1)dx =

∫

∂Ω+,ǫ0

∂νu e
− 1

h
(φ−iψ1)(a1 + r1)dS.(72)

Assume that ψ1, ψ2 are slightly h-dependent with

1

h
(ψ1 + ψ2) → f, h→ 0.

The left hand side of (72) tends to

∫

Ω

qeifa2a1dx,
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when h→ 0. The modulus of the right hand side is

≤ ‖a1 + r1‖∂Ω+,ǫ0

( ∫

∂Ω+,ǫ0

e−2φ/h|∂νu|2dS
) 1

2 .

Here the first factor is bounded when h → 0. In the Carleman estimate (65) we can
replace φ by −φ and make the corresponding permutation of ∂Ω− and ∂Ω+. Applying
this variant to the equation (70), we see that the second factor tends to 0, when h→ 0.
Thus, ∫

Ω

eif(x)a2(x)a1(x)q(x)dx = 0.

Here we can arrange it so that f, a2, a1 are real-analytic and so that a1, a2 are non-
vanishing. Moreover if f can be attained as a limit of (ψ1 + ψ2)/h when h → 0, so
can λf for any λ > 0. Thus we get the conclusion∫

Ω

eiλf(x)a2(x)a1(x)q(x)dx = 0. (73)

To show that q = 0 one uses arguments of analytic microlocal analysis [75].
In [7] it was shown that if the potential is known in a neighborhood of the

boundary and the DN map is measured on any open subset with Dirichlet data
supported in the same set, the potential can be reconstructed from this data. It is an
open problem whether this is valid in the general case. Isakov [63] proved a uniqueness
result in dimension three or higher when the DN map is given on an arbitrary part
of the boundary assuming that the remaining part is an open subset of a plane or a
sphere and the DN map is measured on the plane or sphere.

The DN map with partial data for the magnetic Schrödinger operator was studied
in [30], [77], [138]. We also mention that in [44] (resp. [69]) CGO approximate solutions
are concentrated near planes (resp. spheres) and provided some local results related
to the local DN map. It would be very interesting to extend the partial data result to
systems. The only result available at the present time is the very interesting one of
[114] for Dirac systems.

Using methods of hyperbolic geometry similar to [69] it is shown in [55] that one
can reconstruct inclusions from the local DN map using CGO solutions that decay
exponentially inside a ball and grow exponentially outside. These are called complex

spherical waves. A numerical implementation of this method has been done in [55].
The construction of complex spherical waves can also be done using the CGO solutions
constructed in [75]. This was done in [143] in order to detect elastic inclusions, in
[144] to detect inclusions in the two dimensional case for a large class of systems with
inhomogeneous background, and in [115] for the case of inclusions contained in a slab.
We mention that methods of hyperbolic geometry have been also studied earlier in
the works [11], [37], [116].

7.4. The Linearized Calderón Partial Data Problem

It is an open problem in dimension n ≥ 3 that if the Dirichlet to Neumann map for the
conductivity or potential is measured on an open non-empty subset of the boundary
for Dirichlet data supported in that set we can determine uniquely the potential.

In this section we consider the linearized version of this problem, generalizing
Calderón’s approach. We add the constraint that the restriction of the harmonic
functions to the boundary vanishes on any fixed closed proper subset of the boundary.
We show that the product of these harmonic functions is dense. More precisely
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Theorem 7.6 Let Ω be a connected bounded open set in Rn, n ≥ 2, with smooth
boundary. The set of products of harmonic functions on Ω which vanish on a closed
proper subset Γ ( ∂Ω of the boundary is dense in L1(Ω).

Sketch of the Proof. We take f ∈ L1(Ω). Assume
∫

Ω

fuvdx = 0, (74)

for all harmonic functions u, v with u|Γ = v|Γ = 0.
First one proves a local result. Fix a point x0 on the boundary. It is shown that

if that f = 0 in a neighborhood of x0 then f = 0 in the whole domain. See [29] for
the proof.

We now extend f = 0 outside Ω. We reduce the problem to the case where
the point x0 has a hyperplane tangent to the boundary at the point x0. We use
Calderón’s exponential solutions for all the possible complex frequencies ρ such that
ρ · ρ = 0 (previously we used in sections 2 and 5 the cancellation of the real parts
when taking the products). Using these solutions and the identity (6.2) one obtains a
decay of the Bargmann-Segal transform of f (see [120])

Tf(z) =

∫

Rn

e−
1
2h (z − y)2f(y)dy (75)

for certain complex directions. Using the watermelon approach [73], [121], one
then shows that there is an exponential decay of this transform for other directions
implying that the point (x0, ν), where ν is the normal to the the point x0, is not in the
analytic wave front set of f in contradiction to the microlocal version of Holmgren’s
uniqueness theorem [54], [120]. We explain below some of the details of the proof
below.

One can assume that Ω \ {x0} is on one side of the tangent hyperplane Tx0
(Ω)

at x0 by making a conformal transformation. Pick a ∈ Rn \ Ω which sits on the line
segment in the direction of the outward normal to ∂Ω at x0; there is a ball B(a, r)
such that ∂B(a, r) ∩ Ω = {x0}, and there is a conformal transformation

ψ : Rn \B(a, r) → B(a, r)

x 7→ x− a

|x− a|2 r
2 + a

which fixes x0 and exchanges the interior and the exterior of the ball B(a, r). The
hyperplane H : (x−x0) ·(a−x0) = 0 is tangent to ψ(Ω), and the image ψ(Ω)\{x0} by
the conformal transformation lies inside the ball B(a, r), therefore on one side of H .
The fact that functions are supported on the boundary close to x0 is left unchanged.
Since a function is harmonic on Ω if and only if its Kelvin transform

u∗ = rn−2|x− a|−n+2u ◦ ψ

is harmonic on ψ(Ω), (7.12) becomes

0 =

∫

Ω

fuv dx =

∫

ψ(Ω)

r4|x− a|−4f ◦ ψ u∗v∗ dx

for all harmonic functions u∗, v∗ on ψ(Ω). If one can prove that if |x − a|−4f ◦ ψ
vanishes close to x0 then so does f . Moreover, by scaling one can assume that Ω is
contained in a ball of radius 1.
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Our setting will therefore be as follows: x0 = 0, the tangent hyperplane at x0 is
given by x1 = 0 and

Ω ⊂
{
x ∈ Rn : |x+ e1| < 1}, Γ =

{
x ∈ ∂Ω : x1 ≥ −2c

}
. (76)

The prime will be used to denote the last n − 1 variables so that x = (x1, x
′) for

instance. The Laplacian on Rn has p(ξ) = ξ2 as a principal symbol, if we still denote
by p(ζ) = ζ2 the continuation of this principal symbol on Cn, we consider

p−1(0) =
{
ζ ∈ Cn : ζ2 = 0

}
.

In dimension n = 2, this set is the union of two complex lines

p−1(0) = Cγ ∪ Cγ

where γ = ie1 + e2 = (i, 1) ∈ C2. Note that (γ, γ) is a basis of C2: the decomposition
of a complex vector in this basis reads

ζ = ζ1e1 + ζ2e2 =
ζ2 − iζ1

2
γ +

ζ2 + iζ1
2

γ. (77)

Similarly for n ≥ 2, the differential of the map

s : p−1(0) × p−1(0) → Cn

(ζ, η) 7→ ζ + η

at (ζ0, η0) is surjective

Ds(ζ0, η0) : Tζ0p
−1(0) × Tη0p

−1(0) → Cn

(ζ, η) 7→ ζ + η

provided Cn = Tζ0p
−1(0)+Tη0p

−1(0), i.e. provided ζ0 and η0 are linearly independent.
In particular, this is the case if ζ0 = γ and η0 = −γ; as a consequence all z ∈ Cn,
|z − 2ie1| < 2ε may be decomposed as a sum of the form

z = ζ + η, with ζ, η ∈ p−1(0), |ζ − γ| < Cε, |η + γ| < Cε (78)

provided ε > 0 is small enough.
The exponentials with linear weights

e−
i
h
x·ζ, ζ ∈ p−1(0)

are harmonic functions. We need to add a correction term in order to obtain harmonic
functions u satisfying the boundary requirement u|Γ = 0. Let χ ∈ D(Rn) be a cutoff
function which equals 1 on Γ, and consider the solution w to the Dirichlet problem

∆w = 0 in Ω, w|∂Ω = −(e−
i
h
x·ζχ)|∂Ω. (79)

The function

u(x, ζ) = e−
i
h
x·ζ + w(x, ζ)

is harmonic and satisfies u|Γ = 0. We have the following bound on w:

‖w‖H1(Ω) ≤ C1‖e−
i
h
x·ζχ‖

H
1
2 (∂Ω)

(80)

≤ C2(1 + h−1|ζ|) 1
2 e

1
h
HK(Imζ)
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where HK is the supporting function of the compact subset K = suppχ ∩ ∂Ω of the
boundary

HK(ξ) = sup
x∈K

x · ξ, ξ ∈ Rn.

In particular, if we take χ to be supported in x1 ≤ −c and equal to 1 on x1 ≤ −2c
then the bound (80) becomes

‖w‖H1(Ω) ≤ C2(1 + h−1|ζ|) 1
2 e−

c
h
Imζ1 e

1
h
|Imζ′| when Imζ1 ≥ 0.(81)

The starting point is the cancellation of the integral
∫

Ω

f(x)u(x, ζ)u(x, η) dx = 0, ζ, η ∈ p−1(0) (82)

which may be rewritten in the form
∫

Ω

f(x)e−
i
h
x·(ζ+η) dx = −

∫

Ω

f(x)e−
i
h
x·ζw(x, η) dx

−
∫

Ω

f(x)e−
i
h
x·ηw(x, ζ) dx −

∫

Ω

f(x)w(x, ζ)w(x, η) dx.

This allows to give a bound on the left-hand side
∣∣∣∣
∫

Ω

f(x) e−
i
h
x·(ζ+η) dx

∣∣∣∣ ≤ ‖f‖L∞(Ω)

(
‖e− i

h
x·ζ‖L2(Ω)‖w(x, η)‖L2(Ω)

+ ‖e− i
h
x·η‖L2(Ω)‖w(x, ζ)‖L2(Ω) + ‖w(x, η)‖L2(Ω)‖w(x, ζ)‖L2(Ω)

)
.

Thus using (81)
∣∣∣∣
∫

Ω

f(x)e−
i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C3‖f‖L∞(Ω)(1 + h−1|η|) 1
2 (1 + h−1|ζ|) 1

2

× e−
c
h

min(Imζ1,Imη1) e
1
h

(|Imζ′|+|Imη′|)

when Imζ1 ≥ 0, Imη1 ≥ 0 and ζ, η ∈ p−1(0). In particular, if |ζ − aγ| < Cεa and
|η + aγ| < Cεa with ε ≤ 1/2C then

∣∣∣∣
∫

Ω

f(x)e−
i
h
x·(ζ+η) dx

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2Cεa
h .

Take z ∈ Cn with |z − 2ae1| < 2εa and with ε small enough. Once rescaled the
decomposition (78) gives

z = ζ + η, ζ, η ∈ p−1(0), |ζ − aγ| < Cεa, |η + aγ| < Cεa,

and we therefore get the estimate
∣∣∣∣
∫

Ω

f(x)e−
i
h
x·z dx

∣∣∣∣ ≤ C4h
−1‖f‖L∞(Ω)e

− ca
2h e

2Cεa
h (83)

for all z ∈ Cn such that |z − 2aie1| < 2εa.
This implies that the Bargmann-Segal transform of f satisfies

|Tf(z)| ≤ C|f‖L∞(Ω)e
1
2h

(|Imz|2−|Rez|2− ca
2 ) (84)
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for some ǫ, a, c > 0 and for all z ∈ Cn such that |z − 2aie1| < 2εa.
By the definition of the analytic wave front set, the last estimate says that the

point (0, 2ae1) is not in the analytic wave front set of f. By Kashiwara’s watermelon
theorem [121], [73], since f is supported in the half space x1 ≤ 0, if 0 is in the support
of f then (0, ν) with ν the unit normal to the boundary is also in the analytic wave
front set but this is a contradiction since 2ae1 is also normal to x1 = 0. Therefore 0 is
not in the support of f and f vanishes in a neighborhood of 0.

8. The Calderón Problem in Two Dimensions

Astala and Päivärinta [8], in a seminal contribution, have recently extended
significantly the uniqueness result of [91] for conductivities having two derivatives
in an appropriate sense and the result of [20] for conductivities having one derivative
in appropriate sense, by proving that any L∞ conductivity in two dimensions can
be determined uniquely from the DN map. We remark that the method of [91] and
[20] uses, besides CGO solutions, the ∂ method introduced in one dimension by Beals
and Coifman [13] and generalized to several dimensions in [1], [93], [14], [137]. The
∂ method has been used in numerical reconstruction procedures in two dimensions in
[61], [119] among others.

The proof of [8] relies also on construction of CGO solutions for the conductivity
equation with L∞ coefficients and the ∂ method. This is done by transforming the
conductivity equation to a quasi-regular map. Let D be the unit disk in the plane.
Then we have

Lemma 8.1 Assume u ∈ H1(D) is real valued and satisfies the conductivity equation
on D. Then there exists a function v ∈ H1(D), unique up to a constant, such that
f = u+ iv satisfies the Beltrami equation

∂f = µ∂f, (85)

where µ = (1 − γ)/(1 + γ).
Conversely, if f ∈ H1(D) satisfies (85) with a real-valued µ, then u = Ref and

v = Imf satisfy

∇ · γ∇u = 0 and ∇ · 1

γ
∇v = 0, (86)

respectively, where γ = (1 − µ)/(1 + µ).

Let us denote κ = ||µ||L∞ < 1. Then (85) means that f is a quasi-regular map.
The function v is called the γ-harmonic conjugate of u and it is unique up to a constant.

Astala and Päivärinta consider the µ-Hilbert transform Hµ : H1/2(∂Ω) →
H1/2(∂Ω) that is defined by

Hµ : u
∣∣
∂Ω

7→ v
∣∣
∂Ω

and show that the DN map Λγ determines Hµ and vice versa.
Below we use the complex notation z = x1 + ix2. Moreover, for the equation (85),

it is shown that for every k ∈ C there are complex geometrical optics solutions of the
Beltrami equation that have the form

fµ(z, k) = eikzMµ(z, k), (87)

where

Mµ(z, k) = 1 + O
(

1

z

)
as |z| → ∞. (88)
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More precisely, they prove that

Theorem 8.2 For each k ∈ C and for each 2 < p < 1+1/κ the equation (85) admits
a unique solution f ∈W 1,p

loc (C) of the form (87) such that the asymptotic formula (88)
holds true.

In the case of non-smooth coefficients the function Mµ grows sub-exponentially in
k. Astala and Päivärinta introduce the “transport matrix” to deal with this problem.
Using a result of Bers connecting pseudoanalytic functions with quasi-regular maps
they show that this matrix is determined by the Hilbert transformHµ and therefore the
DN map. Then they use the transport matrix to show that Λγ determines uniquely γ.
See [8] for more details. Logarithmic type stability estimates for Hölder conductivities
of positive exponent have been given in [12].

8.1. Bukhgeim’s Result

In a recent breakthrough, Bukhgeim [21] proved that a potential in W 2,p(Ω), p > 2
can be uniquely determined from the set of Cauchy data as defined in (36). An earlier
result [128] gave this for a generic class of potentials. As before, if two potentials q1, q2
have the same set of Cauchy data, we have

∫

Ω

(q1 − q2)u1u2dx = 0 (89)

where ui, i = 1, 2, are solutions of the Schrödinger equation.
Assume now that 0 ∈ Ω. Bukhgeim takes CGO solutions of the form

u1(z, k) = ez
2k(1 + ψ1(z, k)), u2(z, k) = e−z

2k(1 + ψ2(z, k)) (90)

where z, k ∈ C and we have used the complex notation z = x1 + ix2. Moreover ψ1 and
ψ2 decay uniformly in Ω, in an appropriate sense, for |k| large.

Note that the weight z2k in the exponential is a limiting Carleman weight since
it is a harmonic function but it is singular at 0 since its gradient vanishes there.

Substituting (90) into 89 we obtain

∫

Ω

e2iτx1x2(q1 − q2)(1 + ψ1 + ψ2 + ψ1ψ2)dx = 0.

Now using the decay of ψi in τ , i = 1, 2, and applying stationary phase (the phase
function x1x2 that has a non-degenerate critical point at 0) we obtain q1(0) = q2(0) = 0
in Ω. Of course we can do this at any point of Ω proving the result.

This result also shows that complex conductivities can be determined uniquely
from the DN map. Francini has shown in [36] that this was the case for conductivities
with small imaginary part. It also implies unique determination of a potential from
the fixed energy scattering amplitude in two dimensions.

8.2. Partial Data Problem in 2D

It is shown in [59] that for a two dimensional bounded domain the Cauchy data
for the Schrödinger equation measured on an arbitrary open subset of the boundary
determines uniquely the potential. This implies, for the conductivity equation, that
if one measures the current fluxes at the boundary on an arbitrary open subset of
the boundary produced by voltage potentials supported in the same subset, one can
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determine uniquely the conductivity. The paper [59] uses Carleman estimates with
weights which are harmonic functions with non-degenerate critical points to construct
appropriate complex geometrical optics solutions to prove the result. We describe this
more precisely below.

Let Ω ⊂ R2 be a bounded domain which consists of N smooth closed curves γj ,
∂Ω = ∪Nj=γj .

As before we define the set of Cauchy data for a bounded potential q by:

Ĉq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω

)
| (∆ − q)u = 0 on Ω, u ∈ H1(Ω)

}
. (91)

Let Γ ⊂ ∂Ω be a non-empty open subset of the boundary. Denote Γ0 = ∂Ω \ Γ.
The main result of [59] gives global uniqueness by measuring the Cauchy data on

Γ. Let qj ∈ C2+α(Ω), j = 1, 2 for some α > 0 and let qj be complex-valued. Consider
the following sets of Cauchy data on Γ:

Cqj
=

{(
u|Γ,

∂u

∂ν

∣∣∣
Γ

)
| (∆ − qj)u = 0 in Ω, u|Γ0

= 0, u ∈ H1(Ω)

}
, j = 1, 2.(92)

Theorem 8.3 Assume Cq1 = Cq2 . Then q1 ≡ q2.

Using Theorem 8.3 one concludes immediately, as a corollary, the following global
identifiability result for the conductivity equation (2). This result uses that knowledge
of the Dirichlet-to-Neumann map on an open subset of the boundary determines γ
and its first derivatives on Γ (see [80], [133]).

Corollary 8.4 With some α > 0, let γj ∈ C4+α(Ω), j = 1, 2, be non-vanishing
functions. Assume that

Λγ1(f) = Λγ2(f) on Γ for all f ∈ H
1
2 (Γ), supp f ⊂ Γ.

Then γ1 = γ2.

It is easy to see that Theorem 8.3 implies the analogous result to [75] in the two
dimensional case.

Notice that Theorem 8.3 does not assume that Ω is simply connected. An
interesting inverse problem is whether one can determine the potential or conductivity
in a region of the plane with holes by measuring the Cauchy data only on the accessible
boundary. This is also called the obstacle problem.

Let Ω, D be domains in R2 with smooth boundaries such that D ⊂ Ω. Let V ⊂ ∂Ω
be an open set. Let qj ∈ C2+α(Ω \D), for some α > 0 and j = 1, 2. Let us consider
the following set of partial Cauchy data

C̃qj
= {(u|V ,

∂u

∂ν
|V )|(∆ − qj)u = 0 in Ω \D, u|∂D∪∂Ω\V = 0, u ∈ H1(Ω \D)}.

Corollary 8.5 Assume C̃q1 = C̃q2 . Then q1 = q2.

A similar result holds for the conductivity equation.

Corollary 8.6 Let γj ∈ C4+α(Ω \D) j = 1, 2 be non vanishing functions. Assume

Λγ1(f) = Λγ2(f) on V ∀f ∈ H
1
2 (∂(Ω \D)), supp f ⊂ V

Then γ1 = γ2.
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The two dimensional case has special features since one can construct a much
larger set of complex geometrical optics solutions than in higher dimensions. On
the other hand, the problem is formally determined in two dimensions and therefore
more difficult. The proof of Theorem 8.3 is based on the construction of appropriate
complex geometrical optics solutions by Carleman estimates with degenerate weight
functions.

Sketch of the Proof. For the partial data problem we need a more general glass of
CGO solutions than the ones constructed by Bukhgeim, since we would like to have
the imaginary part of the phase vanish on Γ. So we consider more general holomorphic
functions with non-degenerate critical points as phases.

Let the function Φ(z) = ϕ(x1, x2) + iψ(x1, x2) ∈ C2(Ω) be holomorphic in Ω and

Im Φ|∂Ω\eΓ = 0. Notice that this implies ∇ϕ · ν = 0 on ∂Ω \ Γ̃.

We denote the set of critical points of Φ by

H = {z ∈ Ω|∂zΦ(z) = 0}.

We assume that Φ has a finite number of non-degenerate critical points in Ω, that is
∂2
zΦ(z) 6= 0, z ∈ H. We denote the critical points by H = {x̃1, ..., x̃ℓ}

As in the partial data problem considered in section 7 we construct appropriate
CGO solutions by proving a Carleman estimate.
Carleman estimate

u ∈ H1
0 (Ω), real valued. Then for all large τ > 0:

τ‖ueτϕ‖2
L2(Ω) + ‖ueτϕ‖2

H1(Ω) +

∥∥∥∥
∂u

∂ν
eτϕ
∥∥∥∥

2

L2(∂Ω\eΓ)

+ τ2

∥∥∥∥
∣∣∣∣
∂Φ

∂z

∣∣∣∣ueτϕ
∥∥∥∥

2

L2(Ω)

≤ C

(
‖(∆u)eτϕ‖2

L2(Ω) + τ

∫

eΓ

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

e2τϕdσ

)

with σ the standard measure on ∂Ω.
The Carleman estimate implies the existence of a solution to the boundary value

problem for the Schrödinger equation

(∆ − q)u = f in Ω; u|∂Ω\eΓ = g (93)

and that it satisfies an estimate. More precisely we have

Proposition 8.7 Let q ∈ L∞(Ω). There exists τ0 > 0 such that for all |τ | > τ0 there
exists a solution of (93) such that

‖ue−τϕ‖L2(Ω) ≤ C
(
‖fe−τϕ‖L2(Ω)/τ + ‖ge−τϕ‖L2(∂Ω\eΓ)

)
.

We next find CGO solutions of

(∆ − q)u = 0 in Ω; u|∂Ω\eΓ = 0 (94)

of the form

u(x) = eτΦ(z)(a(z)+a0(z)/τ)+e
τΦ(z)(a(z) + a1(z)/τ)+e

τϕu1+e
τϕu2.(95)

The functions a, a0, a1 ∈ C2(Ω) are holomorphic in Ω and Re a|∂Ω\eΓ = 0.
Moreover

‖uj‖L2(Ω) = o

(
1

τ

)
, τ → ∞, j = 1, 2. (96)
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Now we take two potentials q1 and q2 satisfying the hypothesis of Theorem 8.3.
We take for the potential q1 a solution u of the corresponding Schrödinger equation
of the form (95) and for the Schrödinger equation associated to q2 a solution v of the
form

v(x) = e−τΦ(z)(a(z) + b0(z)/τ)+e
−τΦ(z)(a(z) + b1(z)/τ)+e

−τϕv1+e
−τϕv2(97)

with v1, v2 satisfying the same decay for large τ as u1, u2. Using arguments similar to
those of section 7 we get

∫

Ω

(q1 − q2)uvdx = 0. (98)

Substituting (94) and (97) into this identity and applying stationary phase we conclude

Proposition 8.8 Let {x̃1, . . . , x̃ℓ} be the set of critical points of the function ImΦ.
Then for any potentials q1, q2 satisfying the hypotheses of Theorem 8.3 and for any
holomorphic function a, we have

2
ℓ∑

k=1

π((q1 − q2)|a|2)(x̃k)Re e2iτIm Φ(fxk)

|(det ImΦ′′)(x̃k)| 12
= 0, τ > 0.

We can choose Φ such that

ImΦ(x̃k) 6= ImΦ(x̃j), j 6= k.

Let a(x̃k) 6= 0. Then Proposition 8.8 implies

q1(x̃k) = q2(x̃k).

We then show that the non-degenerate critical points of Φ can be chosen to be a dense
set concluding the sketch of the proof of the theorem.

9. Anisotropic Conductivities

Anisotropic conductivities depend on direction. Muscle tissue in the human body
is an important example of an anisotropic conductor. For instance cardiac muscle
has a conductivity of 2.3 mho in the transverse direction and 6.3 in the longitudinal
direction. The conductivity in this case is represented by a positive definite, smooth,
symmetric matrix γ = (γij(x)) on Ω.

Under the assumption of no sources or sinks of current in Ω, the potential u in
Ω, given a voltage potential f on ∂Ω, solves the Dirichlet problem





n∑
i,j=1

∂
∂xi

(
γij ∂u∂xj

)
= 0 on Ω

u|∂Ω = f.
(99)

The DN map is defined by

Λγ(f) =

n∑

i,j=1

νiγij
∂u

∂xj

∣∣∣
∂Ω

(100)

where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂Ω and u is the solution
of (99). The inverse problem is whether one can determine γ by knowing Λγ .
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Unfortunately, Λγ doesn’t determine γ uniquely. This observation is due to L. Tartar
(see [80] for an account).

Let ψ : Ω → Ω be a C∞ diffeomorphism with ψ|∂Ω = Id where Id denotes the
identity map. We have

Λeγ = Λγ (101)

where

γ̃ =

(
(Dψ)T ◦ γ ◦ (Dψ)

|detDψ|

)
◦ ψ−1. (102)

Here Dψ denotes the (matrix) differential of ψ, (Dψ)T its transpose and the
composition in (102) is to be interpreted as multiplication of matrices.

We have then a large number of conductivities with the same DN map: any change
of variables of Ω that leaves the boundary fixed gives rise to a new conductivity with
the same electrostatic boundary measurements. The question is then whether this is
the only obstruction to unique identifiability of the conductivity.

In two dimensions this has been shown for L∞(Ω) conductivities in [9]. This is
done by reducing the anisotropic problem to the isotropic one by using isothermal
coordinates [2], [130] and using Astala and Päivärinta’s result in the isotropic case
[8]. Earlier results were for C3 conductivities using the result of Nachman [91] and for
Lipschitz conductivities in [127] using the techniques of [20]. An extension of some of
these results to quasilinear anisotropic conductivities can be found in [129].

In three dimensions, as was pointed out in [85], this is a problem of geometrical
nature and makes sense for general compact Riemannian manifolds with boundary.

Let (M, g) be a compact Riemannian manifold with boundary. The Laplace-
Beltrami operator associated to the metric g is given in local coordinates by

∆gu =
1√

det g

n∑

i,j=1

∂

∂xi

(√
det ggij

∂u

∂xj

)
(103)

where (gij) is the matrix inverse of the matrix (gij). Let us consider the Dirichlet
problem associated to (103)

∆gu = 0 on Ω, u|∂Ω = f. (104)

We define the DN map in this case by

Λg(f) =

n∑

i,j=1

νigij
∂u

∂xj

√
det g|∂Ω (105)

The inverse problem is to recover g from Λg.
We have

Λψ∗g = Λg (106)

where ψ is any C∞ diffeomorphism of M which is the identity on the boundary. As
usual ψ∗g denotes the pull back of the metric g by the diffeomorphism ψ.

In the case that M is an open, bounded subset of Rn with smooth boundary, it
is easy to see ([85]) that for n ≥ 3

Λg = Λγ (107)

where

(gij) = (detγkl)
1

n−2 (γij)−1, (γij) = (det gkl)
1
2 (gij)

−1. (108)
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In the two dimensional case there is an additional obstruction since the Laplace-
Beltrami operator is conformally invariant. More precisely we have

∆αg =
1

α
∆g

for any function α, α 6= 0. Therefore we have, for n = 2,

Λα(ψ∗g) = Λg (109)

for any smooth function α 6= 0 so that α|∂M = 1.
Lassas and Uhlmann ([83]) proved that (106) is the only obstruction to unique

identifiability of the conductivity for real-analytic manifolds in dimension n ≥ 3.
In the two dimensional case they showed that (109) is the only obstruction to

unique identifiability for smooth Riemannian surfaces. Moreover these results assume
that the DN map is measured only on an open subset of the boundary. We state the
two basic results.

Let Γ be an open subset ∂M . We define for f , supp f ⊆ Γ

Λg,Γ(f) = Λg(f)|Γ.
Theorem 9.1 (n = 2) Let (M, g) be a compact Riemannian surface with boundary.
Let Γ ⊆ ∂M be an open subset. Then Λg,Γ determines uniquely the conformal class of
(M, g).

Theorem 9.2 (n ≥ 3) Let (M, g) be a real-analytic compact, connected Riemannian
manifold with boundary. Let Γ ⊆ ∂M be real-analytic and assume that g is real-
analytic up to Γ. Then Λg,Γ determines uniquely (M, g) up to an isometry.

Einstein manifolds are real-analytic in the interior and it was conjectured by
Lassas and Uhlmann that they were uniquely determined up to isometry by the DN
map. This was proven in [45].

Notice that these results don’t assume any condition on the topology of the
manifold except for connectedness. An earlier result of [85] assumed that (M, g) was
strongly convex and simply connected and Γ = ∂M in both results. Theorem 9.2 was
extended in [84] to non-compact, connected real-analytic manifolds with boundary.

9.1. The Calderón Problem on Manifolds

The invariant form on a Riemannian manifold with boundary (M, g) for an isotropic
conductivity β is given by

divg(β∇g)u = 0 (110)

where divg (resp. ∇g) denotes divergence (resp. gradient) with respect to the
Riemannian metric g. This includes the case considered by Calderón with g the
Euclidean metric, the anisotropic case by taking gij = γijβ and β =

√
det g.

It was shown in [127] for bounded domains of Euclidean space in two that the
isometric class of (β, g) is determined uniquely by the DN map associated to 110.
In two dimensions, when the metric g is known, it is proven in [50] that one can
uniquely determine the conductivity β. Guillarmou and Tzou [46] have shown that
a potential is uniquely determined for the Schrödinger equation ∆g − q, with ∆g the
Laplace-Beltrami operator associated to the metric g, generalizing the result of [50].

In dimension n ≥ 3 it is an open problem whether one can determine the isotropic
conductivity β from the corresponding DN map associated to (110). As before one
can consider the more general problem of recovering the potential q from the DN
map associated to ∆g − q. We review below the progress that has been made on this
problem based on [31].
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9.2. Complex geometrical optics on manifolds

We review the recent construction of complex geometrical optics construction for a
class of Riemannian manifolds based on [30].

In this paper those Riemannian manifolds which admit limiting Carleman weights,
were characterized. All such weights in Euclidean space were listed in section 7.

Theorem 9.3 If (M, g) is an open manifold having a limiting Carleman weight, then
some conformal multiple of the metric g admits a parallel unit vector field. For simply
connected manifolds, the converse is also true.

Locally, a manifold admits a parallel unit vector field if and only if it is isometric
to the product of an Euclidean interval and another Riemannian manifold. This is an
instance of the de Rham decomposition [109]. Thus, if (M, g) has an LCW ϕ, one can
choose local coordinates in such a way that φ(x) = x1 and

g(x1, x
′) = c(x)

(
1 0
0 g0(x

′)

)
,

where c is a positive conformal factor. Conversely, any metric of this form admits
ϕ(x) = x1 as a limiting weight.

In the case n = 2, limiting Carleman weights in (M, g) are exactly the harmonic
functions with non-vanishing differential.

Let us now introduce the class of manifolds which admit limiting Carleman
weights and for which one can prove uniqueness results. For this we need the notion
of simple manifolds [117].

Definition 9.4 A manifold (M, g) with boundary is simple if ∂M is strictly convex,
and for any point x ∈ M the exponential map expx is a diffeomorphism from some
closed neighborhood of 0 in TxM onto M .

Definition 9.5 A compact manifold with boundary (M, g), of dimension n ≥ 3, is
admissible if it is conformal to a submanifold with boundary of R × (M0, g0) where
(M0, g0) is a compact simple (n− 1)-dimensional manifold.

Examples of admissible manifolds include the following:

1. Bounded domains in Euclidean space, in the sphere minus a point, or in hyperbolic
space. In the last two cases, the manifold is conformal to a domain in Euclidean
space via stereographic projection.

2. More generally, any domain in a locally conformally flat manifold is admissible,
provided that the domain is appropriately small. Such manifolds include locally
symmetric 3-dimensional spaces, which have parallel curvature tensor so their
Cotton tensor vanishes [33].

3. Any bounded domain M in Rn, endowed with a metric which in some coordinates
has the form

g(x1, x
′) = c(x)

(
1 0
0 g0(x

′)

)
,

with c > 0 and g0 simple, is admissible.

4. The class of admissible metrics is stable under C2-small perturbations of g0.
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The first inverse problem involves the Schrödinger operator

Lg,q = ∆g − q,

where q is a smooth complex valued function on (M, g). We make the standing
assumption that 0 is not a Dirichlet eigenvalue of Lg,q in M . Then the Dirichlet
problem {

Lg,qu = 0 in M, u = f on ∂M

has a unique solution for any f ∈ H1/2(∂M), and we may define the DN map

Λg,q : f 7→ ∂νu|∂M .
Given a fixed admissible metric, one can determine the potential q from boundary
measurements.

Theorem 9.6 Let (M, g) be admissible, and let q1 and q2 be two smooth functions on
M . If Λg,q1 = Λg,q2 , then q1 = q2.

This result was known previously in dimensions n ≥ 3 for the Euclidean metric
[131] and for the hyperbolic metric [68]. It has been generalized to Maxwell’s equations
in [74].

10. The Boundary Rigidity Problem and the DN map

We give here a surprising connection between the DN map and the boundary rigidity
problem in two dimensions, two seemingly quite different inverse problems.

The boundary rigidity problem is that of determining the Riemannian metric
of a compact Riemannian manifold with boundary (M, g) by measuring the lengths
of geodesics joining points on the boundary. The information is encoded in the
distance function dg between boundary points. This problem also arose in geophysics
in determining the substructure of the Earth by measuring the travel times of seismic
waves. The Riemannian metric in the isotropic case is given by

ds2 =
1

c2(x)
dx2 (111)

where c(x) denotes the wave speed.
Herglotz [51] considered the case where M is spherically symmetric and the

sound speed is smooth and depends only on the radius. Under the condition that
d
dr (

r
c(r)) > 0, i.e. there are no regions of low velocities, they gave a formula to find

c(r) from the lengths of geodesics. The anisotropic case has also been of interest since
it has been shown that the inner core of the Earth exhibits anisotropic behavior [28].

We have, similar to the invariance discussed in the section 9, dψ∗g = dg for any
diffeomorphism ψ : M → M that leaves the boundary pointwise fixed, i.e., ψ|∂M = Id.
If this is the only obstruction the manifold is said to be boundary rigid.

It is easy to see that not all Riemannian manifolds are boundary rigid since the
boundary distance function only takes into account the minimizing geodesics (first
arrival time of waves) and not all geodesics. Some a-priori restriction is needed on
the manifold. The most usual restriction assumed is simplicity of the manifold as in
section 9.

Michel conjectured that all simple manifolds are boundary rigid [89]. For a review
of recent results on this problem see [123]. Pestov and Uhlmann [108] have proven
this conjecture in the two dimensional case by making a surprising connection with
the DN map. The result is:
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Theorem 10.1 Two dimensional compact, simple Riemannian manifolds with
boundary are boundary rigid.

The main lemma in the proof states that, under the assumptions of the theorem,
the boundary distance function determines the DN map associated to the Laplace-
Beltrami operator. In other words dg1 = dg2 implies that Λg1 = Λg2 . By Theorem
5.2, there exists a diffeomorphism ψ : M −→ M , ψ|∂M = Id and a function
β 6= 0, β|∂M = 1 such that g1 = βψ∗g2. Mukhometov’s theorem [90] implies that
β = 1 showing that g1 = ψ∗g2 proving Theorem 7.1.

11. Invisibility for Electrostatics

We discuss here only invisibility results for electrostatics. For similar results for
electromagnetic waves, acoustic waves, quantum waves, etc., see the review papers
[39], [40] and the references given there.

The fact that the boundary measurements do not change, when a conductivity is
pushed forward by a smooth diffeomorphism leaving the boundary fixed (see section
9), can already be considered as a weak form of invisibility. Different media appear
to be the same, and the apparent location of objects can change. However, this does
not yet constitute real invisibility, as nothing has been hidden from view.

In invisibility cloaking the aim is to hide an object inside a domain by surrounding
it with a material so that even the presence of this object can not be detected by
measurements on the domain’s boundary. This means that all boundary measurements
for the domain with this cloaked object included would be the same as if the
domain were filled with a homogeneous, isotropic material. Theoretical models for
this have been found by applying diffeomorphisms having singularities. These were
first introduced in the framework of electrostatics, yielding counterexamples to the
anisotropic Calderón problem in the form of singular, anisotropic conductivities in
Rn, n ≥ 3, indistinguishable from a constant isotropic conductivity in that they
have the same Dirichlet-to-Neumann map [42, 43]. The same construction was
rediscovered for electromagnetism in [107], with the intention of actually building
such a device with appropriately designed metamaterials; a modified version of this
was then experimentally demonstrated in [118]. (See also [86] for a somewhat different
approach to cloaking in the high frequency limit.)

The first constructions in this direction were based on blowing up the metric
around a point [84]. In this construction, let (M, g) be a compact 2-dimensional
manifold with non-empty boundary, let x0 ∈M and consider the manifold

M̃ = M \ {x0}
with the metric

g̃ij(x) =
1

dM (x, x0)2
gij(x),

where dM (x, x0) is the distance between x and x0 on (M, g). Then (M̃, g̃) is a complete,

non-compact 2-dimensional Riemannian manifold with the boundary ∂M̃ = ∂M .
Essentially, the point x0 has been “pulled to infinity”. On the manifolds M and
M̃ we consider the boundary value problems

{
∆gu = 0 in M ,
u = f on ∂M ,

and





∆egũ = 0 in M̃ ,

ũ = f on ∂M̃ ,

ũ ∈ L∞(M̃).
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These boundary value problems are uniquely solvable and define the DN maps

ΛM,gf = ∂νu|∂M , ΛfM,eg
f = ∂ν ũ|∂fM

where ∂ν denotes the corresponding conormal derivatives. Since, in the two
dimensional case, functions which are harmonic with respect to the metric g stay
harmonic with respect to any metric which is conformal to g, one can see that
ΛM,g = ΛfM,eg

. This can be seen using e.g. Brownian motion or capacity arguments.

Thus, the boundary measurements for (M, g) and (M̃, g̃) coincide. This gives a counter
example for the inverse electrostatic problem on Riemannian surfaces – even the
topology of possibly non-compact Riemannian surfaces can not be determined using
boundary measurements (see Fig. 1).

Figure 1. Blowing up a metric at a point, after [84]. The electrostatic boundary
measurements on the boundary of the surfaces, one compact and the other
noncompact but complete, coincide.

The above example can be thought as a “hole” in a Riemann surface that does
not change the boundary measurements. Roughly speaking, mapping the manifold M̃
smoothly to the set M \ BM (x0, ρ), where BM (x0, ρ) is a metric ball of M , and by
putting an object in the obtained hole BM (x0, ρ), one could hide it from detection at
the boundary. This observation was used in [42, 43], where “undetectability” results
were introduced in three dimensions, using degenerations of Riemannian metrics,
whose singular limits can be considered as coming directly from singular changes
of variables.

Figure 2. A typical member of a family of manifolds developing a singularity as
the width of the neck connecting the two parts goes to zero.

The degeneration of the metric (see Fig. 2) can be obtained by considering
surfaces (or manifolds in the higher dimensional cases) with a thin “neck” that is
pinched. At the limit the manifold contains a pocket about which the boundary
measurements do not give any information. If the collapsing of the manifold is
done in an appropriate way, we have, in the limit, a singular Riemannian manifold
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which is indistinguishable in boundary measurements from a flat surface. Then the
conductivity which corresponds to this metric is also singular at the pinched points,
cf. the first formula in (114). The electrostatic measurements on the boundary for
this singular conductivity will be the same as for the original regular conductivity
corresponding to the metric g.

To give a precise, and concrete, realization of this idea, let B(0, R) ⊂ R3 denote
the open ball with center 0 and radius R. We use in the sequel the set N = B(0, 2),
the region at the boundary of which the electrostatic measurements will be made,
decomposed into two parts, N1 = B(0, 2) \ B(0, 1) and N2 = B(0, 1). We call the
interface Σ = ∂N2 between N1 and N2 the cloaking surface.

We also use a “copy” of the ball B(0, 2), with the notation M1 = B(0, 2), another
ball M2 = B(0, 1), and the disjoint union M of M1 and M2. (We will see the reason
for distinguishing between N and M .) Let gjk = δjk be the Euclidian metrics in M1

and M2 and let γ = 1 be the corresponding isotropic homogeneous conductivity. We
define a singular transformation

F1 : M1 \ {0} → N1, F1(x) = (
|x|
2

+ 1)
x

|x| , 0 < |x| ≤ 2. (112)

Figure 3. Map F1 : B(0, 2) \ {0} → B(0, 2) \B(0, 1)

We also consider a regular transformation (diffeomorphism) F2 : M2 7→ N2, which
for simplicity we take to be the identity map F2 = Id. Considering the maps F1 and
F2 together, F = (F1, F2), we define a map F : M \ {0} = (M1 \ {0}) ∪M2 → N \ Σ.

The push-forward g̃ = F∗g of the metric g in M by F is the metric in N given by

(F∗g)jk (y) =

n∑

p,q=1

∂F p

∂xj
(x)

∂F q

∂xk
(x)gpq(x)

∣∣∣∣∣
x=F−1(y)

. (113)

This metric gives rise to a conductivity σ̃ in N which is singular in N1,

σ̃ =

{
|g̃|1/2g̃jk for x ∈ N1,
δjk for x ∈ N2.

(114)

Thus, F forms an invisibility construction that we call “blowing up a point”.
Denoting by (r, φ, θ) 7→ (r sin θ cosφ, r sin θ sinφ, r cos θ) the spherical coordinates, we
have

σ̃ =




2(r − 1)2 sin θ 0 0
0 2 sin θ 0
0 0 2(sin θ)−1


 , 1 < |x| ≤ 2. (115)
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Note that the anisotropic conductivity σ̃ is singular degenerate on Σ in the sense
that it is not bounded from below by any positive multiple of I. (See [79] for a similar
calculation.)

Figure 4. Analytic solutions for the currents

The Euclidian conductivity δjk in N2 (114) could be replaced by any smooth
conductivity bounded from below and above by positive constants. This would
correspond to cloaking of a general object with non-homogeneous, anisotropic
conductivity. Here, we use the Euclidian metric just for simplicity.

Consider now the Cauchy data of all solutions in the Sobolev space H1(N) of the
conductivity equation corresponding to σ̃, that is,

C1(σ̃) = {(u|∂N , ν· σ̃∇u|∂N ) : u ∈ H1(N), ∇· σ̃∇u = 0},
where ν is the Euclidian unit normal vector of ∂N .

Theorem 11.1 ([43]) The Cauchy data of all H1-solutions for the conductivities σ̃
and γ on N coincide, that is, C1(σ̃) = C1(γ).

This means that all boundary measurements for the homogeneous conductivity
γ = 1 and the degenerated conductivity σ̃ are the same. The result above was proven
in [42, 43] for the case of dimension n ≥ 3. The same basic construction works in the
two dimensional case [79].

Fig. 4 portrays an analytically obtained solution on a disc with conductivity σ̃.
As seen in the figure, no currents appear near the center of the disc, so that if the
conductivity is changed near the center, the measurements on the boundary ∂N do
not change.

The above invisibility result is valid for a more general class of singular cloaking
transformations. A general class, sufficing at least for electrostatics, is given by the
following result from [43]:

Theorem 11.2 Let Ω ⊂ Rn, n ≥ 3, and g = (gij) a smooth metric on Ω bounded
from above and below by positive constants. Let D ⊂⊂ Ω be such that there is a
C∞-diffeomorphism F : Ω \ {y} → Ω \D satisfying F |∂Ω = Id and such that

dF (x) ≥ c0I, det (dF (x)) ≥ c1 dist
Rn (x, y)−1 (116)
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where dF is the Jacobian matrix in Euclidian coordinates on Rn and c0, c1 > 0. Let
ĝ be a metric in Ω which coincides with g̃ = F∗g in Ω \D and is an arbitrary regular
positive definite metric in Dint. Finally, let σ and σ̂ be the conductivities corresponding
to g and ĝ, cf. (108). Then,

C1(σ̂) = C1(σ).

The key to the proof of Theorem 11.2 is a removable singularities theorem that
implies that solutions of the conductivity equation in Ω \D pull back by this singular
transformation to solutions of the conductivity equation in the whole Ω.

Returning to the case Ω = N and the conductivity given by (114), similar types
of results are valid also for a more general class of solutions. Consider an unbounded
quadratic form, A in L2(N, |g̃|1/2dx),

Aeσ[u, v] =

∫

N

σ̃∇u· ∇v dx

defined for u, v ∈ D(Aeσ) = C∞
0 (N). Let Aeσ be the closure of this quadratic form and

say that

∇· σ̃∇u = 0 in N

is satisfied in the finite energy sense if there is u0 ∈ H1(N) supported in N1 such that
u− u0 ∈ D(Aeσ) and

Aeσ[u− u0, v] = −
∫

N

σ̃∇u0· ∇v dx, for all v ∈ D(Aeσ).

Then the Cauchy data set of the finite energy solutions, denoted by

Cf.e.(σ̃) =
{

(u|∂N , ν· σ̃∇u|∂N ) |u is a finite energy solution of ∇· σ̃∇u = 0
}
,

coincides with the Cauchy data Cf.e.(γ) corresponding to the homogeneous
conductivity γ = 1, that is,

Cf.e.(σ̃) = Cf.e.(γ). (117)

Kohn, Shen, Vogelius and Weinstein [79] in an interesting article have considered
the case when instead of blowing up a point one stretches a small ball into the cloaked
region. In this case the conductivity is non-singular and one gets “almost” invisibility
with a precise estimate in terms of the radius of the small ball.

11.1. Quantum Shielding

As mentioned in section 6, in [41], using CGO solutions, uniqueness was proven for the
Calderón problem for Schrödinger operators having a more singular class of potentials,
namely potentials conormal to submanifolds of Rn, n ≥ 3.

However, for more singular potentials, there are counterexamples to uniqueness.
It was constructed in [41] a class of potentials that shield any information about the
values of a potential on a region D contained in a domain Ω from measurements
of solutions at ∂Ω. In other words, the boundary information obtained outside
the shielded region is independent of q|D. On Ω \ D, these potentials behave like
q(x) ∼ −Cd(x, ∂D)−2−ǫ where d denotes the distance to ∂D and C is a positive
constant. In D, Schrödinger’s cat could live forever. From the point of view of
quantum mechanics, q represents a potential barrier so steep that no tunneling
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can occur. From the point of view of optics and acoustics, no sound waves or
electromagnetic waves will penetrate, or emanate from, D. However, this construction
should be thought of as shielding, not cloaking, since the potential barrier that shields
q|D from boundary observation is itself detectable.
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[32] Duistermaat, J.J. and Hörmander, L., Fourier integral operators II, Acta Mathematica,
128(1972), 183-269.

[33] Eisenhart, L., Riemannian geometry, 2nd printing, Princeton University Press, 1949.
[34] Eskin, G., Ralston, J., On the inverse boundary value problem for linear isotropic elasticity,

Inverse Problems, 18(2002), 907–921.
[35] Faddeev D., Growing solutions of the Schrödinger equation , Dokl. Akad. Nauk SSSR, 165(1965),

514–517 (translation in Sov. Phys. Dokl. 10, 1033).
[36] Francini, E., Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann

map, Inverse Problems, 16(2000), 107–119.
[37] Fridman, B. Kuchment, P., Ma, D. and Papanicolaou, Vassilis G., Solution of the linearized

inverse conductivity problem in a half space via integral geometry. Voronezh Winter
Mathematical Schools, 85–95, Amer. Math. Soc.Transl. Ser. 2,, 184, 85-95. Amer. Math.
Soc., Providence, RI, 1998

[38] Gilbarg D. and Trudinger, N., Elliptic Partial Differential Equations, Interscience Publishers
(1964).

[39] Greenleaf, A., Kurylev, Y., Lassas, M. and Uhlmann, G., Cloaking devices, electromagnetic
wormholes, and transformation optics, SIAM Rev., 51(2009), 3–33.

[40] Greenleaf, A., Kurylev, Y., Lassas, M. and Uhlmann, G., Invisibility and inverse problems, Bull.
Amer. Math. Soc. (N.S.), 46(2009), 55–97.

[41] Greenleaf, A., Lassas, M. and Uhlmann, G., The Calderón problem for conormal potentials, I:
Global uniqueness and reconstruction, Comm. Pure Appl. Math, 56(2003), 328–352.

[42] Greenleaf, A., Lassas, M. and Uhlmann, G., Anisotropic conductivities that cannot detected in
EIT, Physiolog. Meas. (special issue on Impedance Tomography), 24(2003), 413-420.

[43] Greenleaf, A., Lassas, M. and Uhlmann, G., On nonuniqueness for Calderón’s inverse problem,
Math. Res. Lett., 10 (2003), 685-693.

[44] Greenleaf, A. and Uhlmann, G., Local uniqueness for the Dirichlet-to-Neumann map via the
two-plane transform, Duke Math. J., 108(2001), 599-617. ‘
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