Math 425, Winter 2018, Homework 1 Solutions

Pugh, Ch. 3: 19

(a.) We show that the complement of D_{k} is relatively open, that is, $\operatorname{if}_{\operatorname{osc}_{x}}(f)<\frac{1}{k}$ then there is some $r>0$ such that if $y \in(x-r, x+r) \cap[a, b]$ then $\operatorname{osc}_{y}(f)<\frac{1}{k}$.

Consider first $x \in(a, b)$. Then since $\operatorname{osc}_{x}(f)<\frac{1}{k}$ we can find $r>0$ so $(x-r, x+r) \subset[a, b]$ and

$$
\sup _{t \in(x-r, x+r)} f(t)-\inf _{t \in(x-r, x+r)} f(t)<\frac{1}{k} .
$$

If $y \in(x-r, x+r)$, then there is some $\delta>0$ so $(y-\delta, y+\delta) \subset(x-r, x+r)$, and thus

$$
\sup _{t \in(y-\delta, y+\delta)} f(t)-\inf _{t \in(y-\delta, y+\delta)} f(t)<\frac{1}{k} \Rightarrow \operatorname{osc}_{y}(f)<\frac{1}{k}
$$

If $x=a$ or $x=b$ the same proof works; for $x=a$ we have some $r>0$ so

$$
\sup _{t \in[a, a+r)} f(t)-\inf _{t \in[a, a+r)} f(t)<\frac{1}{k}
$$

We can consider $y \in(a, a+r)$ (since we know $\operatorname{osc}_{y}(f)<\frac{1}{k}$ for $y=a$), and then there is some $\delta>0$ so $(y-\delta, y+\delta) \subset(a, a+r)$, and continue as above. Similarly for $x=b$.
(b.) The set of discontinuities equals $\bigcup_{k=1}^{\infty} D_{k}$, so is a countable union of closed sets.
(c.) The set of points of continuity equals $[a, b] \backslash \bigcup_{k=1}^{\infty} D_{k}=\bigcap_{k=1}^{\infty}[a, b] \backslash D_{k}$ is the countable intersection of (relatively) open sets.

Pugh, Ch. 3: 27(b)
An example is $\chi_{\mathbb{Q}}(x)$ over the set $[0,1]$. Each $x_{k}^{*}=\frac{1}{n}\left(k-\frac{1}{2}\right)$ in the midpoint rule with n sample points is a rational sumber, so the midpoint rule leads to Riemann sums equal to 1 for every n. But as shown in class the function $\chi_{\mathbb{Q}}$ is not Riemann/Darboux integrable on $[0,1]$ (or any open interval for that matter). Note that if we had taken the integral over $[0, b]$ for b irrational then the midpoint Riemann sums would be identically 0 .

Pugh, Ch. 3: 28(i \Leftrightarrow ii)

($\mathrm{i} \Rightarrow \mathrm{ii}$): we can cover Z by countable intervals $\left(a_{j}, b_{j}\right)$ with $\sum_{j=1}^{\infty} b_{j}-a_{j}<\epsilon$, and the sets $\left[a_{j}, b_{j}\right]$ give a cover satisfying (ii).
(i $\Leftarrow \mathrm{ii}$): cover Z by closed intervals $\left[a_{j}, b_{j}\right]$ with $\sum_{j=1}^{\infty} b_{j}-a_{j}<\frac{1}{2} \epsilon$. Then the open intervals $\left(a_{j}-\frac{\epsilon}{2^{j+2}}, b_{j}+\frac{\epsilon}{2^{j+2}}\right)$ cover, and

$$
\sum_{j=1}^{\infty} b_{j}+\frac{\epsilon}{2^{j+2}}-\left(a_{j}-\frac{\epsilon}{2^{j+2}}\right)=\sum_{j=1}^{\infty} b_{j}-a_{j}+\epsilon \sum_{j=1}^{\infty} \frac{1}{2^{j+1}}<\epsilon
$$

Additional Problem 1:

Let x be irrational. Given $k \in \mathbb{N}$ we find $\delta>0$ so $|y-x|<\delta \Rightarrow f(y)<\frac{1}{k}$. (Since $f(y) \geq 0$ for all y and $f(x)=0$ this is the continuity criteria.)
There are only finitely many point $x_{j}=\frac{j}{k}$ with $0 \leq j \leq k$ for which $f\left(x_{j}\right) \geq \frac{1}{k}$. So let $\delta=\min _{0 \leq j \leq k}\left|y-x_{j}\right|$; then $\delta>0$ since $x \notin \mathbb{Q}$, and $|y-x|<\delta \Rightarrow y \neq x_{j}$ for any j.

Additional Problem 2:

Recall we have a disjoint decomposition $\mathbb{R}=\partial S \cup \operatorname{int}(S) \cup \operatorname{int}\left(S^{c}\right)$. Suppose $x \in \partial S$. Then for all $r>0$ there is some $y \in S$ such that $|y-x|<r$, and some other $y \in \mathbb{R} \backslash S$ such that $|y-x|<r$. Thus

$$
\sup _{|y-x|<r} \chi_{S}(y)=1 \text { and } \inf _{|y-x|<r} \chi_{S}(y)=0 \quad \Rightarrow \quad \operatorname{osc}_{x}\left(\chi_{S}\right)=1
$$

On the other hand, if $x \in \operatorname{int}(S)$ then there is $r>0$ so $|y-x|<r \Rightarrow y \in S \Rightarrow$ $\chi_{S}(y)=1$, and $x \in \operatorname{int}\left(S^{c}\right)$ then there is $r>0$ so $|y-x|<r \Rightarrow y \in S^{c} \Rightarrow \chi_{S}(y)=0$. This shows $\operatorname{osc}_{x}\left(\chi_{S}\right)=0$ if $y \notin \partial S$.

