Math 425, Winter 2018, Homework 1 Solutions

Pugh, Ch. 3: 19

(a.) We show that the complement of D_k is relatively open, that is, if $\operatorname{osc}_x(f) < \frac{1}{k}$ then there is some r > 0 such that if $y \in (x - r, x + r) \cap [a, b]$ then $\operatorname{osc}_y(f) < \frac{1}{k}$. Consider first $x \in (a, b)$. Then since $\operatorname{osc}_x(f) < \frac{1}{k}$ we can find r > 0 so $(x - r, x + r) \subset [a, b]$ and

$$\sup_{t \in (x-r,x+r)} f(t) - \inf_{t \in (x-r,x+r)} f(t) < \frac{1}{k}.$$

If $y \in (x-r, x+r)$, then there is some $\delta > 0$ so $(y-\delta, y+\delta) \subset (x-r, x+r)$, and thus

$$\sup_{t \in (y-\delta,y+\delta)} f(t) - \inf_{t \in (y-\delta,y+\delta)} f(t) < \frac{1}{k} \quad \Rightarrow \quad \operatorname{osc}_y(f) < \frac{1}{k}.$$

If x = a or x = b the same proof works; for x = a we have some r > 0 so

$$\sup_{t \in [a, a+r)} f(t) - \inf_{t \in [a, a+r)} f(t) < \frac{1}{k}.$$

We can consider $y \in (a, a+r)$ (since we know $\operatorname{osc}_y(f) < \frac{1}{k}$ for y=a), and then there is some $\delta > 0$ so $(y-\delta, y+\delta) \subset (a, a+r)$, and continue as above. Similarly for x=b.

- (b.) The set of discontinuities equals $\bigcup_{k=1}^{\infty} D_k$, so is a countable union of closed sets.
- (c.) The set of points of continuity equals $[a,b] \setminus \bigcup_{k=1}^{\infty} D_k = \bigcap_{k=1}^{\infty} [a,b] \setminus D_k$ is the countable intersection of (relatively) open sets.

Pugh, Ch. 3: 27(b)

An example is $\chi_{\mathbb{Q}}(x)$ over the set [0,1]. Each $x_k^* = \frac{1}{n}(k-\frac{1}{2})$ in the midpoint rule with n sample points is a rational sumber, so the midpoint rule leads to Riemann sums equal to 1 for every n. But as shown in class the function $\chi_{\mathbb{Q}}$ is not Riemann/Darboux integrable on [0,1] (or any open interval for that matter). Note that if we had taken the integral over [0,b] for b irrational then the midpoint Riemann sums would be identically 0.

Pugh, Ch. 3: 28(i⇔ii)

(i \Rightarrow ii): we can cover Z by countable intervals (a_j, b_j) with $\sum_{j=1}^{\infty} b_j - a_j < \epsilon$, and the sets $[a_j, b_j]$ give a cover satisfying (ii).

(i \Leftarrow ii): cover Z by closed intervals $[a_j, b_j]$ with $\sum_{j=1}^{\infty} b_j - a_j < \frac{1}{2}\epsilon$. Then the open intervals $(a_j - \frac{\epsilon}{2^{j+2}}, b_j + \frac{\epsilon}{2^{j+2}})$ cover, and

$$\sum_{j=1}^{\infty} b_j + \frac{\epsilon}{2^{j+2}} - \left(a_j - \frac{\epsilon}{2^{j+2}} \right) = \sum_{j=1}^{\infty} b_j - a_j + \epsilon \sum_{j=1}^{\infty} \frac{1}{2^{j+1}} < \epsilon.$$

Additional Problem 1:

Let x be irrational. Given $k \in \mathbb{N}$ we find $\delta > 0$ so $|y - x| < \delta \Rightarrow f(y) < \frac{1}{k}$. (Since $f(y) \ge 0$ for all y and f(x) = 0 this is the continuity criteria.)

There are only finitely many point $x_j = \frac{j}{k}$ with $0 \le j \le k$ for which $f(x_j) \ge \frac{1}{k}$. So let $\delta = \min_{0 \le j \le k} |y - x_j|$; then $\delta > 0$ since $x \notin \mathbb{Q}$, and $|y - x| < \delta \Rightarrow y \ne x_j$ for any j.

Additional Problem 2:

Recall we have a disjoint decomposition $\mathbb{R} = \partial S \cup \operatorname{int}(S) \cup \operatorname{int}(S^c)$. Suppose $x \in \partial S$. Then for all r > 0 there is some $y \in S$ such that |y - x| < r, and some other $y \in \mathbb{R} \setminus S$ such that |y - x| < r. Thus

$$\sup_{|y-x| < r} \chi_S(y) = 1 \text{ and } \inf_{|y-x| < r} \chi_S(y) = 0 \quad \Rightarrow \quad \operatorname{osc}_x(\chi_S) = 1.$$

On the other hand, if $x \in \text{int}(S)$ then there is r > 0 so $|y - x| < r \Rightarrow y \in S \Rightarrow \chi_S(y) = 1$, and $x \in \text{int}(S^c)$ then there is r > 0 so $|y - x| < r \Rightarrow y \in S^c \Rightarrow \chi_S(y) = 0$. This shows $\text{osc}_x(\chi_S) = 0$ if $y \notin \partial S$.