Math 425, Winter 2018, Homework 2 Solutions

Pugh, Ch. 3: 51
We know $g(x)-f(x)>0$ for every x. Also, there must be some point x_{0} where both f and g are continuous: this is because the set where either f or g are discontinuous is a set of measure 0 , but $[a, b]$ is not a set of measure 0 . (Pugh assumes $a<b$ without stating it explicitly.) Then $g\left(x_{0}\right)-f\left(x_{0}\right)>0$ and is continuous at x_{0}, so for some $\delta>0$ we know $g(x)-f(x)>\frac{1}{2}\left(g\left(x_{0}\right)-f\left(x_{0}\right)\right)$ if $\left|x-x_{0}\right|<\delta$. Since $g\left(x_{0}\right)-f\left(x_{0}\right)>0$ for all x, we deduce

$$
g(x)-f(x)>\frac{1}{2}\left(g\left(x_{0}\right)-f\left(x_{0}\right)\right) \cdot \chi_{\left(x_{0}-\delta, x_{0}+\delta\right)}(x) \quad \forall x \in[a, b] .
$$

Thus

$$
\int_{a}^{b} g(x) d x-\int_{a}^{b} f(x) d x>\frac{1}{2}\left(g\left(x_{0}\right)-f\left(x_{0}\right)\right) \int_{a}^{b} \chi_{\left(x_{0}-\delta, x_{0}+\delta\right)}(x) d x>0
$$

where the last inequality holds since $(a, b) \cap\left(x_{0}-\delta, x_{0}+\delta\right)$ is a nonempty open interval.
Pugh, Ch. 3: 53
The proof follows by showing that the function $\max (f(x), g(x))$ is continuous at a point x_{0} if both f and g are continuous there, and similarly for $\min (f(x), g(x))$. If will follow that the set of discontinuitites of $\max (f(x), g(x))$ is measure 0 .
There are a few ways of showing this; for example using sequences or an $\epsilon-\delta$ argument. Alternatively, one can write

$$
\max (f(x), g(x))=\frac{1}{2}(|f(x)+g(x)|-|f(x)-g(x)|)
$$

Pugh, Ch. 3: 62

We are assuming that $a_{k} \geq 0$, so convergence of $\sum a_{k}$ is equivalent to existence of M such that, for all $m \in \mathbb{N}$,

$$
\sum_{k=1}^{m} a_{k} \leq M
$$

This is equivalent to $\sum_{k=1}^{2^{n}} a_{k} \leq M$ holding for all n (since the a_{k} are nonnegative). We will prove

$$
\begin{equation*}
\frac{1}{2} \sum_{j=1}^{n} 2^{j} a_{2^{j}} \leq \sum_{k=1}^{2^{n}-1} a_{k} \leq \sum_{j=0}^{n-1} 2^{j} a_{2^{j}} . \tag{1}
\end{equation*}
$$

It will then follow that $\sum_{k} a_{k}$ converges iff $\sum_{j} 2^{j} a_{2^{j}}$ converges.
It is easy to see (1) symbolically: since a_{j} is decreasing,

$$
a_{2}+2 a_{4}+4 a_{8}+\cdots \leq a_{1}+\left(a_{2}+a_{3}\right)+\left(a_{4}+a_{5}+a_{6}+a_{7}\right)+\cdots \leq a_{1}+2 a_{2}+4 a_{4}+\cdots
$$

To prove (1) explicitly, we write $\sum_{k=1}^{2^{n}-1} a_{k}=\sum_{j=1}^{n} \sum_{k=2^{j-1}}^{2^{j}-1} a_{k}$, and since the sequence is decreasing

$$
2^{j-1} a_{2 j} \leq \sum_{k=2^{j-1}}^{2^{j}-1} a_{k} \leq 2^{j-1} a_{2 j-1}
$$

Additional Problem 1:

We assume $f^{\prime}(x)$ is Darboux integrable. Let $P=\left\{a=x_{0}<\cdots<x_{n}=b\right\}$ be any partition of $[a, b]$, and recall

$$
U\left(f^{\prime}, P\right)=\sum_{j=1}^{n} M_{j}\left(x_{j}-x_{j-1}\right), \quad L\left(f^{\prime}, P\right)=\sum_{j=1}^{n} m_{j}\left(x_{j}-x_{j-1}\right),
$$

where

$$
M_{j}=\sup _{t \in\left[x_{j-1}, x_{j}\right]} f^{\prime}(t), \quad m_{j}=\inf _{t \in\left[x_{j-1}, x_{j}\right]} f^{\prime}(t) .
$$

If $j=0$ or $j=n$ take the interval to be respectively left or right open; in fact the proof below will work if every interval is taken to be open at both ends when defining M_{j} and m_{j}.
By the mean value theorem, $f\left(x_{j}\right)-f\left(x_{j-1}\right)=f^{\prime}(t)\left(x_{j}-x_{j-1}\right)$ for some $t \in\left(x_{j-1}, x_{j}\right)$, so

$$
m_{j}\left(x_{j}-x_{j-1}\right) \leq f\left(x_{j}\right)-f\left(x_{j-1}\right) \leq M_{j}\left(x_{j}-x_{j-1}\right)
$$

Adding up over j we obtain, for any partition,

$$
L\left(f^{\prime}, P\right) \leq f(b)-f(a) \leq U\left(f^{\prime}, P\right)
$$

Taking a limit over partitions so $U\left(f^{\prime}, P\right)-L\left(f^{\prime}, P\right) \rightarrow 0$ we conclude that $f(b)-f(a)=$ $\int_{a}^{b} f^{\prime}(t) d t$.

Additional Problem 2:

(a.) Suppose $k \geq 1$. The function $f(x)=x^{k}:[0, \infty) \rightarrow[0, \infty)$ is continuous, and strictly increasing: if $x<z$ then $x^{k}<z^{k}$. This can be seen by the mean value theorem, using that $f^{\prime}(x)=k x^{k-1}>0$ on $(0, \infty)$, or by multiplication properties of positive numbers. Also, if $x \geq 1$ then $f(x) \geq x$.

Suppose $0<y<M$, and take $M \geq 1$. Then since $f(0)<y<f(M)$, the intermediate value theorem says there is some $x \in(0, M)$ so that $f(x)=y$. By strict increasingnessity of f, x is unique.
(b.) Given $\epsilon>0$, and $y>0$, we need to find N such that $1-\epsilon<y^{1 / k}<1+\epsilon$ when $k \geq N$. Since $f(x)=x^{k}$ is increasing, this is equivalent to

$$
(1-\epsilon)^{k}<y<(1+\epsilon)^{k} \quad \text { if } k \geq N .
$$

Since $1-\epsilon<0$, we know $\lim _{k \rightarrow \infty}(1-\epsilon)^{k}=0$, and since $1+\epsilon>0$, we know $\lim _{k \rightarrow \infty}(1+\epsilon)^{k}=\infty$, in the sense that given any R there is some N so $(1+\epsilon)^{k}>M$ for $k \geq N$. Since $y>0$ we conclude that there is some N so the above holds.

