
Math 425, Winter 2018, Homework 2 Solutions

Pugh, Ch. 3: 51

We know g(x) − f(x) > 0 for every x. Also, there must be some point x0 where both f
and g are continuous: this is because the set where either f or g are discontinuous is a set
of measure 0, but [a, b] is not a set of measure 0. (Pugh assumes a < b without stating it
explicitly.) Then g(x0) − f(x0) > 0 and is continuous at x0, so for some δ > 0 we know
g(x)− f(x) > 1

2(g(x0)− f(x0)) if |x− x0| < δ. Since g(x0)− f(x0) > 0 for all x, we deduce

g(x)− f(x) >
1

2

(
g(x0)− f(x0)

)
· χ(x0−δ,x0+δ)(x) ∀x ∈ [a, b].

Thus ∫ b

a
g(x) dx−

∫ b

a
f(x) dx >

1

2

(
g(x0)− f(x0)

)∫ b

a
χ(x0−δ,x0+δ)(x) dx > 0,

where the last inequality holds since (a, b) ∩ (x0 − δ, x0 + δ) is a nonempty open interval.
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The proof follows by showing that the function max
(
f(x), g(x)

)
is continuous at a point x0

if both f and g are continuous there, and similarly for min
(
f(x), g(x)

)
. If will follow that

the set of discontinuitites of max
(
f(x), g(x)

)
is measure 0.

There are a few ways of showing this; for example using sequences or an ε − δ argument.
Alternatively, one can write

max
(
f(x), g(x)

)
=

1

2

(
|f(x) + g(x)| − |f(x)− g(x)|

)
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We are assuming that ak ≥ 0, so convergence of
∑
ak is equivalent to existence of M such

that, for all m ∈ N,
m∑
k=1

ak ≤M.

This is equivalent to
2n∑
k=1

ak ≤ M holding for all n (since the ak are nonnegative). We will

prove

(1)
1

2

n∑
j=1

2ja2j ≤
2n−1∑
k=1

ak ≤
n−1∑
j=0

2ja2j .

It will then follow that
∑

k ak converges iff
∑

j 2j a2j converges.

It is easy to see (1) symbolically: since aj is decreasing,

a2 + 2a4 + 4a8 + · · · ≤ a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · · ≤ a1 + 2a2 + 4a4 + · · ·

To prove (1) explicitly, we write
2n−1∑
k=1

ak =
n∑
j=1

2j−1∑
k=2j−1

ak , and since the sequence is decreasing

2j−1a2j ≤
2j−1∑
k=2j−1

ak ≤ 2j−1a2j−1 .



Additional Problem 1:

We assume f ′(x) is Darboux integrable. Let P = {a = x0 < · · · < xn = b} be any partition
of [a, b], and recall

U(f ′, P ) =
n∑
j=1

Mj(xj − xj−1), L(f ′, P ) =
n∑
j=1

mj(xj − xj−1),

where
Mj = sup

t∈[xj−1,xj ]
f ′(t), mj = inf

t∈[xj−1,xj ]
f ′(t).

If j = 0 or j = n take the interval to be respectively left or right open; in fact the proof
below will work if every interval is taken to be open at both ends when defining Mj and
mj .

By the mean value theorem, f(xj)− f(xj−1) = f ′(t)(xj − xj−1) for some t ∈ (xj−1, xj), so

mj(xj − xj−1) ≤ f(xj)− f(xj−1) ≤Mj(xj − xj−1).
Adding up over j we obtain, for any partition,

L(f ′, P ) ≤ f(b)− f(a) ≤ U(f ′, P )

Taking a limit over partitions so U(f ′, P ) − L(f ′, P ) → 0 we conclude that f(b) − f(a) =∫ b
a f
′(t) dt.

Additional Problem 2:

(a.) Suppose k ≥ 1. The function f(x) = xk : [0,∞)→ [0,∞) is continuous, and strictly
increasing: if x < z then xk < zk. This can be seen by the mean value theorem,
using that f ′(x) = kxk−1 > 0 on (0,∞), or by multiplication properties of positive
numbers. Also, if x ≥ 1 then f(x) ≥ x.

Suppose 0 < y < M , and take M ≥ 1. Then since f(0) < y < f(M), the
intermediate value theorem says there is some x ∈ (0,M) so that f(x) = y. By
strict increasingnessity of f , x is unique.

(b.) Given ε > 0, and y > 0, we need to find N such that 1 − ε < y1/k < 1 + ε when
k ≥ N . Since f(x) = xk is increasing, this is equivalent to

(1− ε)k < y < (1 + ε)k if k ≥ N.
Since 1 − ε < 0, we know limk→∞(1 − ε)k = 0, and since 1 + ε > 0, we know
limk→∞(1+ ε)k =∞, in the sense that given any R there is some N so (1+ ε)k > M
for k ≥ N . Since y > 0 we conclude that there is some N so the above holds.


