Math 425, Winter 2018, Homework 2 Solutions

Pugh, Ch. 3: 51

We know g(x) — f(x) > 0 for every z. Also, there must be some point zy where both f
and g are continuous: this is because the set where either f or g are discontinuous is a set
of measure 0, but [a,b] is not a set of measure 0. (Pugh assumes a < b without stating it
explicitly.) Then g(zg) — f(z¢) > 0 and is continuous at xg, so for some § > 0 we know
g(z) — f(z) > $(g(z0) — f(x0)) if |z — 20| < 8. Since g(z0) — f(z0) > 0 for all z, we deduce

1
9(@) = f(@) > 5 (9(20) = £(@0)) * X(ao-sa00) () Ve € [a,b].

Thus

b b b
1
[ ot@ran = [ s@yds > 5 (a60) = £@0) [ Nay-sarr @) do > 0
where the last inequality holds since (a,b) N (xg — d, 29 + J) is a nonempty open interval.

Pugh, Ch. 3: 53

The proof follows by showing that the function max( f(x), g(x)) is continuous at a point xg
if both f and g are continuous there, and similarly for min( f(z), g(az)) If will follow that
the set of discontinuitites of max(f(x), g(x)) is measure 0.

There are a few ways of showing this; for example using sequences or an € — § argument.
Alternatively, one can write

max(f(2), 9(2)) = 5 (1) + 9(2)| = |(2) - 9(a)])

Pugh, Ch. 3: 62
We are assuming that ay > 0, so convergence of ) ay, is equivalent to existence of M such
that, for all m € N,

m
Z Qg < M.
k=1
on
This is equivalent to Z ar < M holding for all n (since the aj are nonnegative). We will
k=1

prove
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1 n ' n—1 '
(1) §sza2j S Z ap S 22‘](12]'.
7j=1 k=1 7=0

It will then follow that }_, a) converges iff 3, 27 ay; converges.

It is easy to see (1) symbolically: since a; is decreasing,

a2—|—2a4+4a8+~--Sa1—|—(ag—l—ag)—|—(a4+a5+a6+a7)+---§a1+2a2+4a4+---

2n—1 n  27-1
To prove (1) explicitly, we write Z ap = E Z ag , and since the sequence is decreasing
k=1 j=1 k=271
20 -1



Additional Problem 1:

We assume f/(z) is Darboux integrable. Let P = {a = 29 < --- < 2, = b} be any partition
of [a, b, and recall

U(f,P)=>_ Mj(x; —xj1), L(f,P)=>Y mj(z;—x;1),
j=1 i=1

where
M;= sup f(¢), m; = inf _f'(¢).

telz;j_1,x ] t€[z;—1,3;]
If j = 0 or j = n take the interval to be respectively left or right open; in fact the proof
below will work if every interval is taken to be open at both ends when defining M; and
mj.
By the mean value theorem, f(x;) — f(zj—1) = f'(t)(x; — x;—1) for some t € (xj_1,z;), so
mj(z; — 1) < f(x)) = flzj-1) < Mj(x; — xj).
Adding up over j we obtain, for any partition,

L(f', P) < f(b) = f(a) <U(f', P)
Taking a limit over partitions so U(f’, P) — L(f’, P) — 0 we conclude that f(b) — f(a) =
1P dt.

Additional Problem 2:

(a.) Suppose k > 1. The function f(z) = z* : [0,00) — [0, 00) is continuous, and strictly
increasing: if < z then z* < z*. This can be seen by the mean value theorem,
using that f/(x) = kxz*~1 > 0 on (0, 00), or by multiplication properties of positive
numbers. Also, if x > 1 then f(z) > .

Suppose 0 < y < M, and take M > 1. Then since f(0) < y < f(M), the
intermediate value theorem says there is some x € (0, M) so that f(z) = y. By
strict increasingnessity of f, x is unique.

(b.) Given € > 0, and y > 0, we need to find N such that 1 — e < y'/* < 1 + ¢ when
k> N. Since f(z) = 2* is increasing, this is equivalent to

(1-ef<y<(1+eF if k>N.
Since 1 — € < 0, we know limy_,o(1 — €)* = 0, and since 1 + ¢ > 0, we know

limy 0 (14 €)* = 00, in the sense that given any R there is some N so (1+€)¥ > M
for kK > N. Since y > 0 we conclude that there is some N so the above holds.



