Math 425, Winter 2018, Homework 3 Solutions

Pugh, Ch. 4: 1(a)
We say that $f_{n} \rightarrow f$ pointwise if for each point $x \in M$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$.
We say that $f_{n} \rightarrow f$ uniformly if given $\epsilon>0$ there exists N such that when $n \geq N$ we have $d_{N}\left(f_{n}(x), f(x)\right)<\epsilon$ at every $x \in M$.

Pugh, Ch. 4: 2

The proof is almost identical to that of Theorem 1. Given $\epsilon>0$ find n so $d_{N}\left(f_{n}(y), f(y)\right)<$ $\epsilon / 3$ for all $y \in M$. Given $x \in M$ there is $\delta>0$ so that $d_{N}\left(f_{n}(x), f_{n}(y)\right)<\epsilon / 3$ if $d_{M}(x, y)<\delta$. Then if $d_{M}(x, y)<\delta$

$$
d_{N}(f(x), f(y)) \leq d_{N}\left(f(x), f_{n}(x)\right)+d_{N}\left(f_{n}(x), f_{n}(y)\right)+d_{N}\left(f_{n}(y), f(y)\right)<\epsilon,
$$

so f is continuous from $M \rightarrow N$.

Pugh, Ch. 4: 3

(a.) As in the proof of Theorem 1, find n so $\left|f_{n}(x)-f(x)\right|<\epsilon / 3$ for all x. Then by continuity of f_{n} at x_{0} there is $\delta>0$ so $\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\epsilon / 3$ if $\left|x-x_{0}\right|<\delta$. Then if $\left|x-x_{0}\right|<\delta$ we have

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|+\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|<\epsilon
$$

so f is continuous at x_{0}.
(b.) f need not be piecewise continous even if each f_{n} is. An example is to let

$$
f(x)= \begin{cases}\frac{1}{j}, & x \in\left(\frac{1}{j+1}, \frac{1}{j}\right] \\ 0, & x=0 .\end{cases}
$$

and

$$
f_{n}(x)= \begin{cases}\frac{1}{j}, & x \in\left(\frac{1}{j+1}, \frac{1}{j}\right] \quad \text { if } j \leq n \\ 0, & x \in\left[0, \frac{1}{n+1}\right] .\end{cases}
$$

Pugh, Ch. 4: 4(a)

This is just like problem 2, taking $M=N=\mathbb{R}$, and noting that the choice of δ for f_{n} is independent of x and y, so we get $|f(x)-f(y)|<\epsilon$ for all $|x-y|<\delta$.

Additional Problem 1:

(a.) Suppose that $f_{n} \rightarrow f$ uniformly in $C_{b}(\mathbb{R})$. Then, given $\epsilon>0$ there is some n so $\sup _{x \in \mathbb{R}}\left|f(x)-f_{n}(x)\right|<\epsilon / 2$. Since $f_{n} \in C_{0}(\mathbb{R})$ there is some R so that $|f(x)|<\epsilon / 2$ if $|x|>R$. Then

$$
|x|>R \Rightarrow|f(x)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Thus $f \in C_{0}(\mathbb{R})$, and this shows that $C_{0}(\mathbb{R})$ is (sequentially) closed in $C_{b}(\mathbb{R})$.
(b.) Given $\epsilon>0$, we need find δ so that $|f(x)-f(y)|<\epsilon$ if $|x-y|<\delta$. Since $f \in C_{0}(\mathbb{R})$ there is R so that $|f(x)|<\epsilon / 2$ if $|x| \geq R$. Since $[-R-1, R+1]$ is compact, the function f is uniformy continuous there, so there is $\delta>0$ so that $|f(x)-f(y)|<\epsilon$ if $|x-y|<\delta$ and $x, y \in[-R-1, R+1]$. We may assume $\delta<1$. Now assume $x, y \in \mathbb{R}$ and $|x-y|<\delta$. Then either both $x, y \in[-R-1, R+1]$, or both $|x|,|y| \geq R$. In the former case we have $|f(x)-f(y)| \leq \delta$, and in the latter $|f(x)-f(y)| \leq|f(x)|+|f(y)| \leq \epsilon$.
(c.) $f(x)=\sin \left(x^{2}\right)$ is in $C_{b}(\mathbb{R})$ but is not uniformly continous.

Additional Problem 2: We use Taylor's theorem (Pugh page 160) to deduce

$$
\left|f(x)-\sum_{k=0}^{m} \frac{f^{(k)}(0)}{k!} x^{k}\right| \leq \frac{C|x|^{m+1}}{R^{m+1}}=C\left(\frac{|x|}{R}\right)^{m+1} .
$$

If $|x|<R$ the right hand side goes to 0 as $m \rightarrow \infty$.

