Winter 2018
Homework 4

Chapter 4 [Pugh, pg. 263]: 9, 12, 13, 15, 19.

For Problem 15, show that the result holds for functions $f \in C_{b}(\mathbb{R})$; that is, bounded continuous functions on the real line. Do this for both part (a) and part (b).

Additional problem

1. Assume that, for some $R>0$ and some $C,\left|a_{k}\right| \leq C R^{-k}$ for all k. Consider the function $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ for $x \in(-R, R)$. Show that

$$
\left|f^{(m)}(x)\right| \leq \frac{C m!}{R^{m}}\left(1-\frac{|x|}{R}\right)^{-m-1} \quad \text { for } x \in(-R, R)
$$

Hint: consider $g(x)=(1-x / R)^{-1}$ and the series expansion for $g^{(m)}(x)$.

