Math 425, Winter 2018, Homework 4 Solutions

Pugh, Ch. 4: 9.

The function f must be constant. Given $\epsilon>0$, we will show that $|f(x)-f(0)|<\epsilon$ for every $x \in \mathbb{R}$, which proves f is constant. We assume pointwise equicontinuity of $f(n x)$ at $x=0$. Let $\delta>0$ be so that $|y|<\delta \Rightarrow|f(n y)-f(0)|<\epsilon$. Given $x \neq 0$, find n so $n \delta>|x|$, so $\left|n^{-1} x\right|<\delta$. Then $|f(x)-f(0)|=\left|f\left(n \cdot n^{-1} x\right)-f(0)\right|<\epsilon$.

Pugh, Ch. 4: 12.
We show that if the condition

$$
|x-y| \leq \delta \Rightarrow|f(x)-f(y)| \leq \epsilon
$$

holds for all $f \in \mathcal{F}$, and $\left(f_{n}\right) \subset \mathcal{F}$ converges pointwise to g, then

$$
|x-y| \leq \delta \Rightarrow|g(x)-g(y)| \leq \epsilon
$$

To see this, take any two points x, y with $|x-y| \leq \delta$, and write

$$
|g(x)-g(y)|=\lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{n}(y)\right| \leq \epsilon .
$$

Pugh, Ch. 4: 13.
(a.) Yes. For example, use the argument from Arzela-Ascoli to produce a subsequence $\left(g_{n}\right)$ that converges pointwise at each $x \in \mathbb{Q}$. Pointwise equicontinuity and pointwise boundedness implies uniform equicontinuity and boundedness on any compact interval, so the Arzela-Ascoli Theorem (or Theorem 16) shows that the sequence converges uniformly on each compact interval to a continuous function. This determines a function $g(x)$ for $x \in \mathbb{R}$, that is continuous on \mathbb{R} since it is continuous on each interval $(-R, R)$ for every $R>0$.
(b.) The convergence need not be uniform on \mathbb{R}. For example, $\left(1+|x-n|^{2}\right)^{-1}$ is equicontinuous on \mathbb{R}, and converges pointwise to 0 , but not uniformly to 0 .

Pugh, Ch. 4: 15.
(a.) If f has modulus of continuity $\mu(s)$, given ϵ we can find δ so $\mu(\delta)<\epsilon$, since $\lim _{\delta \rightarrow 0} \mu(\delta)=0$. Then $|x-y|<\delta$ implies

$$
|f(x)-f(y)|<\mu(|x-y|) \leq \mu(\delta)<\epsilon
$$

where we use that μ is increasing. (There is no need for strictly increasing here.)
For the other direction, assume f is uniformly continuous. Define

$$
\mu(s)=\sup \{|f(x)-f(y)|:|x-y| \leq s\} .
$$

Then $\mu(s)$ is increasing in s (though not strictly) since one is taking the sup of a larger set the larger s is. To see that $\lim _{s \rightarrow 0} \mu(s)=0$, note that if $\epsilon>0$ there is some $\delta>0$ so that $|x-y| \leq \delta$ then $|f(x)-f(y)| \leq \epsilon$. This implies that $\mu(\delta) \leq \epsilon$. Since $\mu(s)$ is increasing we get that $0 \leq \mu(s) \leq \epsilon$ if $0 \leq s \leq \delta$.

To see that μ is continuous is a bit of an unnecessary nuisance; most texts don't require continuity. But to see the above $\mu(s)$ is continuous on \mathbb{R}, given $\epsilon>0$ we take the δ for the uniform continuity condition. Then we check that, for all $s \in[0, \infty)$, $\mu(s+\delta) \leq \mu(s)+\epsilon$, which will imply continuity since μ is increasing.

To check this, if $|x-y| \leq s+\delta$ there is some z with $|z-x| \leq s$ and $|y-z| \leq \delta$. Thus,

$$
|f(x)-f(y)| \leq|f(x)-f(z)|+|f(z)-f(y)| \leq \mu(s)+\epsilon .
$$

Then

$$
\mu(s+\delta)=\sup \{|f(x)-f(y)|:|x-y| \leq s+\delta\} \leq \mu(s)+\epsilon
$$

We can make $\mu(s)$ strictly increasing by noting that $\mu(s)+s$ is also a modulus of continuity for f.
(b.) The proof is essentially identical for uniform equicontinuity, just define

$$
\mu(s)=\sup \{|f(x)-f(y)|:|x-y| \leq s, f \in \mathcal{F}\} .
$$

Pugh, Ch. 4: 19.
By density, the balls $M_{\delta} a$ for $a \in A$ cover M, so choosing a finite subcover we get a finite collection so that $M \subset \bigcup_{j=1}^{N} M_{\delta} a_{j}$.

Additional Problem 1: Consider the equality, for $|x|<R$,

$$
C\left(1-\frac{x}{R}\right)^{-1}=\sum_{k=0}^{\infty} C R^{-k} x^{k}
$$

Differentiate m times to get

$$
\frac{C m!}{R^{m}}\left(1-\frac{x}{R}\right)^{-m-1}=\sum_{k=m}^{\infty} \frac{k!}{(k-m)!} C R^{-k} x^{k-m}
$$

Now consider

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, \quad f^{(m)}(x)=\sum_{k=m}^{\infty} \frac{k!}{(k-m)!} a_{k} x^{k-m}
$$

By comparison,

$$
\begin{aligned}
\left|f^{(m)}(x)\right| & \leq \sum_{k=m}^{\infty} \frac{k!}{(k-m)!}\left|a_{k}\right||x|^{k-m} \\
& \leq \sum_{k=m}^{\infty} \frac{k!}{(k-m)!} C R^{-k}|x|^{k-m} \\
& =\frac{C m!}{R^{m}}\left(1-\frac{|x|}{R}\right)^{-m-1}
\end{aligned}
$$

