
Math 425, Winter 2018, Homework 4 Solutions

Pugh, Ch. 4: 9.

The function f must be constant. Given ε > 0, we will show that |f(x) − f(0)| < ε for
every x ∈ R, which proves f is constant. We assume pointwise equicontinuity of f(nx) at
x = 0. Let δ > 0 be so that |y| < δ ⇒ |f(ny)− f(0)| < ε. Given x 6= 0, find n so nδ > |x|,
so |n−1x| < δ. Then |f(x)− f(0)| = |f(n · n−1x)− f(0)| < ε.

Pugh, Ch. 4: 12.

We show that if the condition

|x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε
holds for all f ∈ F , and (fn) ⊂ F converges pointwise to g, then

|x− y| ≤ δ ⇒ |g(x)− g(y)| ≤ ε
To see this, take any two points x, y with |x− y| ≤ δ, and write

|g(x)− g(y)| = lim
n→∞

|fn(x)− fn(y)| ≤ ε.

Pugh, Ch. 4: 13.

(a.) Yes. For example, use the argument from Arzela-Ascoli to produce a subsequence
(gn) that converges pointwise at each x ∈ Q. Pointwise equicontinuity and point-
wise boundedness implies uniform equicontinuity and boundedness on any compact
interval, so the Arzela-Ascoli Theorem (or Theorem 16) shows that the sequence
converges uniformly on each compact interval to a continuous function. This deter-
mines a function g(x) for x ∈ R, that is continuous on R since it is continuous on
each interval (−R,R) for every R > 0.

(b.) The convergence need not be uniform on R. For example,
(
1 + |x − n|2

)−1
is

equicontinuous on R, and converges pointwise to 0, but not uniformly to 0.

Pugh, Ch. 4: 15.

(a.) If f has modulus of continuity µ(s), given ε we can find δ so µ(δ) < ε, since
limδ→0 µ(δ) = 0. Then |x− y| < δ implies

|f(x)− f(y)| < µ(|x− y|) ≤ µ(δ) < ε

where we use that µ is increasing. (There is no need for strictly increasing here.)
For the other direction, assume f is uniformly continuous. Define

µ(s) = sup
{
|f(x)− f(y)| : |x− y| ≤ s

}
.

Then µ(s) is increasing in s (though not strictly) since one is taking the sup of a
larger set the larger s is. To see that lims→0 µ(s) = 0, note that if ε > 0 there is
some δ > 0 so that |x − y| ≤ δ then |f(x) − f(y)| ≤ ε. This implies that µ(δ) ≤ ε.
Since µ(s) is increasing we get that 0 ≤ µ(s) ≤ ε if 0 ≤ s ≤ δ.

To see that µ is continuous is a bit of an unnecessary nuisance; most texts don’t
require continuity. But to see the above µ(s) is continuous on R, given ε > 0 we take
the δ for the uniform continuity condition. Then we check that, for all s ∈ [0,∞),
µ(s+ δ) ≤ µ(s) + ε, which will imply continuity since µ is increasing.

To check this, if |x− y| ≤ s+ δ there is some z with |z − x| ≤ s and |y − z| ≤ δ.
Thus,

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)| ≤ µ(s) + ε.



Then

µ(s+ δ) = sup
{
|f(x)− f(y)| : |x− y| ≤ s+ δ

}
≤ µ(s) + ε.

We can make µ(s) strictly increasing by noting that µ(s) + s is also a modulus of
continuity for f .

(b.) The proof is essentially identical for uniform equicontinuity, just define

µ(s) = sup
{
|f(x)− f(y)| : |x− y| ≤ s, f ∈ F

}
.

Pugh, Ch. 4: 19.

By density, the balls Mδa for a ∈ A cover M , so choosing a finite subcover we get a finite
collection so that M ⊂

⋃N
j=1Mδaj .

Additional Problem 1: Consider the equality, for |x| < R,

C
(

1− x

R

)−1
=
∞∑
k=0

C R−k xk .

Differentiate m times to get

Cm!

Rm

(
1− x

R

)−m−1
=
∞∑
k=m

k!

(k −m)!
C R−k xk−m .

Now consider

f(x) =
∞∑
k=0

ak x
k , f (m)(x) =

∞∑
k=m

k!

(k −m)!
ak x

k−m .

By comparison,

|f (m)(x)| ≤
∞∑
k=m

k!

(k −m)!
|ak| |x|k−m

≤
∞∑
k=m

k!

(k −m)!
CR−k |x|k−m

=
Cm!

Rm

(
1− |x|

R

)−m−1
.


