Math 425, Winter 2018, Homework 4 Solutions

Pugh, Ch. 4: 9.

The function f must be constant. Given ¢ > 0, we will show that |f(z) — f(0)] < € for
every € R, which proves f is constant. We assume pointwise equicontinuity of f(nzx) at
x =0. Let 6 > 0 be so that |y| < = |f(ny) — f(0)] <e. Given z # 0, find n so nd > |z,
so [n~lz| < 4. Then |f(x) — f(0)| = |f(n-n"tx) — f(0)| <e.

Pugh, Ch. 4: 12.
We show that if the condition

[z —y[<o=|f(z) - fly)| <e
holds for all f € F, and (f,) C F converges pointwise to g, then

2 —y| <d=lg(x) —g(y)| < e

To see this, take any two points z,y with |z — y| < J, and write
l9(z) —g(y)| = lim [fn(z) — fu(y)| <€
n— o0

Pugh, Ch. 4: 13.

(a.) Yes. For example, use the argument from Arzela-Ascoli to produce a subsequence
(g9n) that converges pointwise at each z € Q. Pointwise equicontinuity and point-
wise boundedness implies uniform equicontinuity and boundedness on any compact
interval, so the Arzela-Ascoli Theorem (or Theorem 16) shows that the sequence
converges uniformly on each compact interval to a continuous function. This deter-
mines a function g(z) for x € R, that is continuous on R since it is continuous on
each interval (—R, R) for every R > 0.

(b.) The convergence need not be uniform on R. For example, (1 + |z — n|2)_1 is
equicontinuous on R, and converges pointwise to 0, but not uniformly to 0.

Pugh, Ch. 4: 15.

(a.) If f has modulus of continuity u(s), given € we can find  so u(d) < e, since
lims_o 1(d) = 0. Then |z — y| < § implies

[f(2) = Fy)l < plle —yl) < p(d) <e
where we use that u is increasing. (There is no need for strictly increasing here.)
For the other direction, assume f is uniformly continuous. Define

p(s) = sup{ |f(z) = f(y)| : |z —y| < s}.
Then p(s) is increasing in s (though not strictly) since one is taking the sup of a
larger set the larger s is. To see that lims o u(s) = 0, note that if € > 0 there is
some 0 > 0 so that |z — y| < J then |f(x) — f(y)| < e. This implies that u(J) < e.
Since p(s) is increasing we get that 0 < u(s) <eif 0 < s < 4.

To see that p is continuous is a bit of an unnecessary nuisance; most texts don’t
require continuity. But to see the above p(s) is continuous on R, given € > 0 we take
the ¢ for the uniform continuity condition. Then we check that, for all s € [0, ),
(s +9) < u(s) + €, which will imply continuity since p is increasing.

To check this, if |x — y| < s+ ¢ there is some z with |z — x| < s and |y — z| < 4.
Thus,

[f (@) = fFW < [f(2) = FR +1f(2) = FW)] < pls) + e



Then

p(s +0) =sup{ |f(x) = f(Y)| : [z =yl < s+ 0} < pls) +e
We can make p(s) strictly increasing by noting that u(s) 4 s is also a modulus of
continuity for f.

(b.) The proof is essentially identical for uniform equicontinuity, just define

p(s) =sup{|f(x) = f()| : |z —y| < s, f € F}.

Pugh, Ch. 4: 19.

By density, the balls Msa for a € A cover M, so choosing a finite subcover we get a finite
collection so that M C Ujvzl M;sa;.

Additional Problem 1: Consider the equality, for || < R,

0(1— %)71 :§C’R_ka}k.

Differentiate m times to get

Cm! (1- E)‘m_l - i _H [C Rk

R™ R = (k —m)!
Now consider
ad ad k!
_ k m _ k—m
f(x)_kz:oakx ) f( )(x)_k,z,;b(k—m)!akx .

By comparison,



