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Math 425, Winter 2018, Homework 5 Solutions

Ch. 4: 26. One example is M = (0,00) with the standard metric, and f(z) = .

Ch. 4: 27.

A weak contraction does not need to be a contraction: for an example we will take
a continuously differentiable function f(z) on R so that |f'(x)| < 1 for all z, with
0 < f'(z) <1and lim,,_ o f'(z) =1, say

e

f@)=log(l+e), @)=

If it holds that |f(z) — f(y)| < L|z — y| then we have |f'(z)| < L wherever f'(x)
exists, so this cannot hold for the above map with L < 1. Note that this map does
not have a fixed point on R, since z = log(1 + €*) would give e* = 1 + e*.

T

Even on a compact set we can have a weak contraction that is not a contraction by
the above method: let f(z) = 2% on [0,1]. Then f(z) = z has limit 1 at 2 = 1 so
is not a contraction, but if x # y we have

32% = 39l = 3(z +y) [z —
and if  # y then one of them is less than 1 so 3(z +y) < 1.

The quickest proof of this is to find a minimum of the continuous function d(z, f(x))
on the compact set M. Let the minimum occur at z. If x # f(x), then letting
y = f(x) we have

d(y, f(y)) = d(f(x), f(f(2))) < d(z, f(x)),

a contradiction. A fixed point must be unique: if x # y and f(z) =z, f(y) = y, we
have a contradiction: d(z,y) = d(f(z), f(y)) < d(z,y).

A more illustrative proof depends on the fact that, if K is a compact set and
f a weak-contraction, then diam(f(K)) < diam(K') unless f(K) is a single point.
To see this, since K is compact so is f(K), and so if diam(f(K)) > 0 then there
exist points x,y € f(K) so that diam(f(K)) = d(z,y). If we write z = f(2') and
y= f(y), for ',y € K, then d(2/,y') > d(x,y), so diam(K) > diam(f(K)).

The quickest proof now is to consider the nested sequence of sets M; = fI(M);
that is, My = M and M, = f(M; ). These are nested non-empty compact sets, so
K= ﬂ;’il Mj is non-empty. But f(K) = K. So K must be a single point, hence a
fixed point.

Ch. 4: 34.
The point here is just to verify that if ¢ > 0, then the function
0, t<ec,
t) = -
y() {(t—c)Z, t>c

satisfies ¥/ (t) = 24/|y(¢)|. This is true for ¢ < ¢ since both sides equal 0, and similarly
for ¢ > ¢ since both sides equal (¢ — ¢). We thus need to verify that y'(c) = 0 exists
and = 0. For this, we observe that
t) —
’y(iy(c)‘ <|t—c—0 ast—ec
—c



(c.) The Picard Theorem assumes that F'(y) is Lipschitz. But 24/|y| is not Lipschitz at
y = 0, since that would require /|y| < Ll|y| for some constant L. However, taking
y = €2 this only holds for e > L~

Additional problem 1. Suppose this holds for f. Given € > 0 use Weirstrass Approxi-
mation to find ¢(z) so |f(z) — q(z)| < € for all = € [a,b]. Then

b b b
E(b—a) > / (@) — q(z)[? dz = / F@)? + g(x)? de — 2 / f(@)a(z) dx

The last term is 0 by assumption, and the integral of ¢(z)? is nonnegative. So we get
f: |f(2)|? dx < €2(b—a) for all e. This forces f: |f(x)]? dx = 0 (since f(z)? is non-negative),
and since f(z)? is continuous and non-negative this forces f(x) = 0 for all z.

Additional problem 2(a). Let g(y) = f(—logy). Then since —logy maps (0, 1] contin-
uously into [0, 00), we see g € C((0,1]). It is bounded since f is bounded.

Additional problem 2(b). We want to show that [g(y)] < € if 0 < y < §. Since

x = —logy is a decreasing function of y, this is equivalent to |f(z)| < € if z > —logd. We
know |f(z)| < e if x > M, so take 6 = e~ to get |g(y)| < € for 0 < y < . Letting g(0) = 0
makes g continuous onl0, 1].

Additional problem 2(c). By Weirstrass, there is a polynomial ¢(z) so |g(y) —q(y)| < i€
for all y € [0,1]. In particular |¢(0)| < %e, so letting p(y) = ¢(y) — ¢(0) gives a polynomial
with |g(y) — p(y)| < € for all y € [0,1]. Thus

£(2) = ple™)] = lg(e™) — ple™®)| < ¢ for all z € [0, 0).

Additional problem 3(a). Given € > 0, for each = € [a,b], there is some N, depending

on z so f,(z) < e. By continuity of fy, there is r, > 0 so fn,(y) < € if |y — z| < rg.

The neighborhoods |y — x| < 7, cover [a,b], so we can find a finite cover, say [a,b] C
UjLi(zj — rj. 25 +15). Let Nj be the N, for z;. Take N = max; N;. By the monotonic
decreasing property, if n > N then
In(y) < fn;(y) < e if y € (x5 —rj, 25 +15).

This is true for all j, which cover [a,b], so fn(y) < € for all y € [a,b] if n > N.
Additional problem 3(b). For example the functions

0, x € [0,n],

fnz)=<x—n, z€nn+1],.

1, x € [n,00)



