Math 425, Winter 2018, Homework 5 Solutions

Pugh, Ch. 4: 26. One example is $M = (0, \infty)$ with the standard metric, and $f(x) = \frac{1}{2}x$.

Pugh, Ch. 4: 27.

(a.) A weak contraction does not need to be a contraction: for an example we will take a continuously differentiable function f(x) on \mathbb{R} so that |f'(x)| < 1 for all x, with 0 < f'(x) < 1 and $\lim_{x \to -\infty} f'(x) = 1$, say

$$f(x) = \log(1 + e^x), \qquad f'(x) = \frac{e^x}{1 + e^x}.$$

If it holds that $|f(x) - f(y)| \le L|x - y|$ then we have $|f'(x)| \le L$ wherever f'(x) exists, so this cannot hold for the above map with L < 1. Note that this map does not have a fixed point on \mathbb{R} , since $x = \log(1 + e^x)$ would give $e^x = 1 + e^x$.

(b.) Even on a compact set we can have a weak contraction that is not a contraction by the above method: let $f(x) = \frac{1}{2}x^2$ on [0, 1]. Then f'(x) = x has limit 1 at x = 1 so is not a contraction, but if $x \neq y$ we have

$$\left|\frac{1}{2}x^2 - \frac{1}{2}y^2\right| = \frac{1}{2}(x+y)\left|x-y\right|$$

and if $x \neq y$ then one of them is less than 1 so $\frac{1}{2}(x+y) < 1$.

(c.) The quickest proof of this is to find a minimum of the continuous function d(x, f(x)) on the compact set M. Let the minimum occur at x. If $x \neq f(x)$, then letting y = f(x) we have

$$d(y, f(y)) = d(f(x), f(f(x))) < d(x, f(x)),$$

a contradiction. A fixed point must be unique: if $x \neq y$ and f(x) = x, f(y) = y, we have a contradiction: d(x, y) = d(f(x), f(y)) < d(x, y).

A more illustrative proof depends on the fact that, if K is a compact set and f a weak-contraction, then diam(f(K)) < diam(K) unless f(K) is a single point. To see this, since K is compact so is f(K), and so if diam(f(K)) > 0 then there exist points $x, y \in f(K)$ so that diam(f(K)) = d(x, y). If we write x = f(x') and y = f(y'), for $x', y' \in K$, then d(x', y') > d(x, y), so diam(K) > diam(f(K)).

The quickest proof now is to consider the nested sequence of sets $M_j = f^j(M)$; that is, $M_0 = M$ and $M_{j+1} = f(M_j)$. These are nested non-empty compact sets, so $K = \bigcap_{j=1}^{\infty} M_j$ is non-empty. But f(K) = K. So K must be a single point, hence a fixed point.

Pugh, Ch. 4: 34.

(a.)-(b.) The point here is just to verify that if $c \ge 0$, then the function

$$y(t) = \begin{cases} 0, & t \le c, \\ (t-c)^2, & t \ge c \end{cases}$$

satisfies $y'(t) = 2\sqrt{|y(t)|}$. This is true for t < c since both sides equal 0, and similarly for t > c since both sides equal (t - c). We thus need to verify that y'(c) = 0 exists and = 0. For this, we observe that

$$\left|\frac{y(t) - y(c)}{t - c}\right| \le |t - c| \to 0 \quad \text{as} \ t \to c.$$

(c.) The Picard Theorem assumes that F(y) is Lipschitz. But $2\sqrt{|y|}$ is not Lipschitz at y = 0, since that would require $\sqrt{|y|} \le L|y|$ for some constant L. However, taking $y = \epsilon^2$ this only holds for $\epsilon \ge L^{-1}$.

Additional problem 1. Suppose this holds for f. Given $\epsilon > 0$ use Weirstrass Approximation to find q(x) so $|f(x) - q(x)| < \epsilon$ for all $x \in [a, b]$. Then

$$\epsilon^{2}(b-a) \ge \int_{a}^{b} |f(x) - q(x)|^{2} \, dx = \int_{a}^{b} f(x)^{2} + q(x)^{2} \, dx - 2 \int_{a}^{b} f(x)q(x) \, dx$$

The last term is 0 by assumption, and the integral of $q(x)^2$ is nonnegative. So we get $\int_a^b |f(x)|^2 dx \le \epsilon^2 (b-a)$ for all ϵ . This forces $\int_a^b |f(x)|^2 dx = 0$ (since $f(x)^2$ is non-negative), and since $f(x)^2$ is continuous and non-negative this forces f(x) = 0 for all x.

Additional problem 2(a). Let $g(y) = f(-\log y)$. Then since $-\log y$ maps (0,1] continuously into $[0,\infty)$, we see $g \in C((0,1])$. It is bounded since f is bounded.

Additional problem 2(b). We want to show that $|g(y)| < \epsilon$ if $0 < y < \delta$. Since $x = -\log y$ is a decreasing function of y, this is equivalent to $|f(x)| < \epsilon$ if $x > -\log \delta$. We know $|f(x)| < \epsilon$ if x > M, so take $\delta = e^{-M}$ to get $|g(y)| < \epsilon$ for $0 < y < \delta$. Letting g(0) = 0 makes g continuous on[0, 1].

Additional problem 2(c). By Weirstrass, there is a polynomial q(x) so $|g(y) - q(y)| < \frac{1}{2}\epsilon$ for all $y \in [0, 1]$. In particular $|q(0)| < \frac{1}{2}\epsilon$, so letting p(y) = q(y) - q(0) gives a polynomial with $|g(y) - p(y)| < \epsilon$ for all $y \in [0, 1]$. Thus

$$|f(x) - p(e^{-x})| = |g(e^{-x}) - p(e^{-x})| < \epsilon$$
 for all $x \in [0, \infty)$.

Additional problem 3(a). Given $\epsilon > 0$, for each $x \in [a, b]$, there is some N_x depending on x so $f_{N_x}(x) < \frac{1}{2}\epsilon$. By continuity of f_{N_x} there is $r_x > 0$ so $f_{N_x}(y) < \epsilon$ if $|y - x| < r_x$. The neighborhoods $|y - x| < r_x$ cover [a, b], so we can find a finite cover, say $[a, b] \subset \bigcup_{j=1}^m (x_j - r_j, x_j + r_j)$. Let N_j be the N_x for x_j . Take $N = \max_j N_j$. By the monotonic decreasing property, if $n \ge N$ then

$$f_n(y) \le f_{N_j}(y) \le \epsilon$$
 if $y \in (x_j - r_j, x_j + r_j)$.

This is true for all j, which cover [a, b], so $f_n(y) < \epsilon$ for all $y \in [a, b]$ if $n \ge N$.

Additional problem 3(b). For example the functions

$$f_n(x) = \begin{cases} 0, & x \in [0, n], \\ x - n, & x \in [n, n + 1], \\ 1, & x \in [n, \infty) \end{cases}$$