Math 425, Winter 2018, Homework 5 Solutions

Pugh, Ch. 4: 26. One example is $M=(0, \infty)$ with the standard metric, and $f(x)=\frac{1}{2} x$.
Pugh, Ch. 4: 27.
(a.) A weak contraction does not need to be a contraction: for an example we will take a continuously differentiable function $f(x)$ on \mathbb{R} so that $\left|f^{\prime}(x)\right|<1$ for all x, with $0<f^{\prime}(x)<1$ and $\lim _{x \rightarrow-\infty} f^{\prime}(x)=1$, say

$$
f(x)=\log \left(1+e^{x}\right), \quad f^{\prime}(x)=\frac{e^{x}}{1+e^{x}} .
$$

If it holds that $|f(x)-f(y)| \leq L|x-y|$ then we have $\left|f^{\prime}(x)\right| \leq L$ wherever $f^{\prime}(x)$ exists, so this cannot hold for the above map with $L<1$. Note that this map does not have a fixed point on \mathbb{R}, since $x=\log \left(1+e^{x}\right)$ would give $e^{x}=1+e^{x}$.
(b.) Even on a compact set we can have a weak contraction that is not a contraction by the above method: let $f(x)=\frac{1}{2} x^{2}$ on $[0,1]$. Then $f^{\prime}(x)=x$ has limit 1 at $x=1$ so is not a contraction, but if $x \neq y$ we have

$$
\left|\frac{1}{2} x^{2}-\frac{1}{2} y^{2}\right|=\frac{1}{2}(x+y)|x-y|
$$

and if $x \neq y$ then one of them is less than 1 so $\frac{1}{2}(x+y)<1$.
(c.) The quickest proof of this is to find a minimum of the continuous function $d(x, f(x))$ on the compact set M. Let the minimum occur at x. If $x \neq f(x)$, then letting $y=f(x)$ we have

$$
d(y, f(y))=d(f(x), f(f(x)))<d(x, f(x)),
$$

a contradiction. A fixed point must be unique: if $x \neq y$ and $f(x)=x, f(y)=y$, we have a contradiction: $d(x, y)=d(f(x), f(y))<d(x, y)$.

A more illustrative proof depends on the fact that, if K is a compact set and f a weak-contraction, then $\operatorname{diam}(f(K))<\operatorname{diam}(K)$ unless $f(K)$ is a single point. To see this, since K is compact so is $f(K)$, and so if $\operatorname{diam}(f(K))>0$ then there exist points $x, y \in f(K)$ so that $\operatorname{diam}(f(K))=d(x, y)$. If we write $x=f\left(x^{\prime}\right)$ and $y=f\left(y^{\prime}\right)$, for $x^{\prime}, y^{\prime} \in K$, then $d\left(x^{\prime}, y^{\prime}\right)>d(x, y)$, so $\operatorname{diam}(K)>\operatorname{diam}(f(K))$.

The quickest proof now is to consider the nested sequence of sets $M_{j}=f^{j}(M)$; that is, $M_{0}=M$ and $M_{j+1}=f\left(M_{j}\right)$. These are nested non-empty compact sets, so $K=\bigcap_{j=1}^{\infty} M_{j}$ is non-empty. But $f(K)=K$. So K must be a single point, hence a fixed point.

Pugh, Ch. 4: 34.

(a.)-(b.) The point here is just to verify that if $c \geq 0$, then the function

$$
y(t)= \begin{cases}0, & t \leq c \\ (t-c)^{2}, & t \geq c\end{cases}
$$

satisfies $y^{\prime}(t)=2 \sqrt{|y(t)|}$. This is true for $t<c$ since both sides equal 0 , and similarly for $t>c$ since both sides equal $(t-c)$. We thus need to verify that $y^{\prime}(c)=0$ exists and $=0$. For this, we observe that

$$
\left|\frac{y(t)-y(c)}{t-c}\right| \leq|t-c| \rightarrow 0 \quad \text { as } t \rightarrow c .
$$

(c.) The Picard Theorem assumes that $F(y)$ is Lipschitz. But $2 \sqrt{|y|}$ is not Lipschitz at $y=0$, since that would require $\sqrt{|y|} \leq L|y|$ for some constant L. However, taking $y=\epsilon^{2}$ this only holds for $\epsilon \geq L^{-1}$.

Additional problem 1. Suppose this holds for f. Given $\epsilon>0$ use Weirstrass Approximation to find $q(x)$ so $|f(x)-q(x)|<\epsilon$ for all $x \in[a, b]$. Then

$$
\epsilon^{2}(b-a) \geq \int_{a}^{b}|f(x)-q(x)|^{2} d x=\int_{a}^{b} f(x)^{2}+q(x)^{2} d x-2 \int_{a}^{b} f(x) q(x) d x
$$

The last term is 0 by assumption, and the integral of $q(x)^{2}$ is nonnegative. So we get $\int_{a}^{b}|f(x)|^{2} d x \leq \epsilon^{2}(b-a)$ for all ϵ. This forces $\int_{a}^{b}|f(x)|^{2} d x=0$ (since $f(x)^{2}$ is non-negative), and since $f(x)^{2}$ is continuous and non-negative this forces $f(x)=0$ for all x.

Additional problem 2(a). Let $g(y)=f(-\log y)$. Then since $-\log y$ maps $(0,1]$ continuously into $[0, \infty)$, we see $g \in C((0,1])$. It is bounded since f is bounded.

Additional problem 2(b). We want to show that $|g(y)|<\epsilon$ if $0<y<\delta$. Since $x=-\log y$ is a decreasing function of y, this is equivalent to $|f(x)|<\epsilon$ if $x>-\log \delta$. We know $|f(x)|<\epsilon$ if $x>M$, so take $\delta=e^{-M}$ to get $|g(y)|<\epsilon$ for $0<y<\delta$. Letting $g(0)=0$ makes g continuous on $[0,1]$.

Additional problem 2(c). By Weirstrass, there is a polynomial $q(x)$ so $|g(y)-q(y)|<\frac{1}{2} \epsilon$ for all $y \in[0,1]$. In particular $|q(0)|<\frac{1}{2} \epsilon$, so letting $p(y)=q(y)-q(0)$ gives a polynomial with $|g(y)-p(y)|<\epsilon$ for all $y \in[0,1]$. Thus

$$
\left|f(x)-p\left(e^{-x}\right)\right|=\left|g\left(e^{-x}\right)-p\left(e^{-x}\right)\right|<\epsilon \quad \text { for all } x \in[0, \infty) .
$$

Additional problem 3(a). Given $\epsilon>0$, for each $x \in[a, b]$, there is some N_{x} depending on x so $f_{N_{x}}(x)<\frac{1}{2} \epsilon$. By continuity of $f_{N_{x}}$ there is $r_{x}>0$ so $f_{N_{x}}(y)<\epsilon$ if $|y-x|<r_{x}$. The neighborhoods $|y-x|<r_{x}$ cover $[a, b]$, so we can find a finite cover, say $[a, b] \subset$ $\bigcup_{j=1}^{m}\left(x_{j}-r_{j}, x_{j}+r_{j}\right)$. Let N_{j} be the N_{x} for x_{j}. Take $N=\max _{j} N_{j}$. By the monotonic decreasing property, if $n \geq N$ then

$$
f_{n}(y) \leq f_{N_{j}}(y) \leq \epsilon \text { if } y \in\left(x_{j}-r_{j}, x_{j}+r_{j}\right)
$$

This is true for all j, which cover $[a, b]$, so $f_{n}(y)<\epsilon$ for all $y \in[a, b]$ if $n \geq N$.
Additional problem 3(b). For example the functions

$$
f_{n}(x)= \begin{cases}0, & x \in[0, n] \\ x-n, & x \in[n, n+1] \\ 1, & x \in[n, \infty)\end{cases}
$$

