
Math 425, Winter 2018, Homework 5 Solutions

Pugh, Ch. 4: 26. One example is M = (0,∞) with the standard metric, and f(x) = 1
2x.

Pugh, Ch. 4: 27.

(a.) A weak contraction does not need to be a contraction: for an example we will take
a continuously differentiable function f(x) on R so that |f ′(x)| < 1 for all x, with
0 < f ′(x) < 1 and limx→−∞ f

′(x) = 1, say

f(x) = log(1 + ex) , f ′(x) =
ex

1 + ex
.

If it holds that |f(x) − f(y)| ≤ L|x − y| then we have |f ′(x)| ≤ L wherever f ′(x)
exists, so this cannot hold for the above map with L < 1. Note that this map does
not have a fixed point on R, since x = log(1 + ex) would give ex = 1 + ex.

(b.) Even on a compact set we can have a weak contraction that is not a contraction by
the above method: let f(x) = 1

2x
2 on [0, 1]. Then f ′(x) = x has limit 1 at x = 1 so

is not a contraction, but if x 6= y we have

|12x
2 − 1

2y
2| = 1

2(x+ y) |x− y|

and if x 6= y then one of them is less than 1 so 1
2(x+ y) < 1.

(c.) The quickest proof of this is to find a minimum of the continuous function d(x, f(x))
on the compact set M . Let the minimum occur at x. If x 6= f(x), then letting
y = f(x) we have

d(y, f(y)) = d(f(x), f(f(x))) < d(x, f(x)),

a contradiction. A fixed point must be unique: if x 6= y and f(x) = x, f(y) = y, we
have a contradiction: d(x, y) = d(f(x), f(y)) < d(x, y).

A more illustrative proof depends on the fact that, if K is a compact set and
f a weak-contraction, then diam(f(K)) < diam(K) unless f(K) is a single point.
To see this, since K is compact so is f(K), and so if diam(f(K)) > 0 then there
exist points x, y ∈ f(K) so that diam(f(K)) = d(x, y). If we write x = f(x′) and
y = f(y′), for x′, y′ ∈ K, then d(x′, y′) > d(x, y), so diam(K) > diam(f(K)).

The quickest proof now is to consider the nested sequence of sets Mj = f j(M);
that is, M0 = M and Mj+1 = f(Mj). These are nested non-empty compact sets, so
K =

⋂∞
j=1Mj is non-empty. But f(K) = K. So K must be a single point, hence a

fixed point.

Pugh, Ch. 4: 34.

(a.)-(b.) The point here is just to verify that if c ≥ 0, then the function

y(t) =

{
0, t ≤ c,
(t− c)2, t ≥ c

satisfies y′(t) = 2
√
|y(t)|. This is true for t < c since both sides equal 0, and similarly

for t > c since both sides equal (t− c). We thus need to verify that y′(c) = 0 exists
and = 0. For this, we observe that∣∣∣y(t)− y(c)

t− c

∣∣∣ ≤ |t− c| → 0 as t→ c.



(c.) The Picard Theorem assumes that F (y) is Lipschitz. But 2
√
|y| is not Lipschitz at

y = 0, since that would require
√
|y| ≤ L|y| for some constant L. However, taking

y = ε2 this only holds for ε ≥ L−1.

Additional problem 1. Suppose this holds for f . Given ε > 0 use Weirstrass Approxi-

mation to find q(x) so |f(x)− q(x)| < ε for all x ∈ [a, b]. Then

ε2(b− a) ≥
∫ b

a
|f(x)− q(x)|2 dx =

∫ b

a
f(x)2 + q(x)2 dx− 2

∫ b

a
f(x)q(x) dx

The last term is 0 by assumption, and the integral of q(x)2 is nonnegative. So we get∫ b
a |f(x)|2 dx ≤ ε2(b−a) for all ε. This forces

∫ b
a |f(x)|2 dx = 0 (since f(x)2 is non-negative),

and since f(x)2 is continuous and non-negative this forces f(x) = 0 for all x.

Additional problem 2(a). Let g(y) = f(− log y). Then since − log y maps (0, 1] contin-

uously into [0,∞), we see g ∈ C((0, 1]). It is bounded since f is bounded.

Additional problem 2(b). We want to show that |g(y)| < ε if 0 < y < δ. Since

x = − log y is a decreasing function of y, this is equivalent to |f(x)| < ε if x > − log δ. We
know |f(x)| < ε if x > M , so take δ = e−M to get |g(y)| < ε for 0 < y < δ. Letting g(0) = 0
makes g continuous on[0, 1].

Additional problem 2(c). By Weirstrass, there is a polynomial q(x) so |g(y)−q(y)| < 1
2ε

for all y ∈ [0, 1]. In particular |q(0)| < 1
2ε, so letting p(y) = q(y)− q(0) gives a polynomial

with |g(y)− p(y)| < ε for all y ∈ [0, 1]. Thus

|f(x)− p(e−x)| = |g(e−x)− p(e−x)| < ε for all x ∈ [0,∞).

Additional problem 3(a). Given ε > 0, for each x ∈ [a, b], there is some Nx depending

on x so fNx(x) < 1
2ε. By continuity of fNx there is rx > 0 so fNx(y) < ε if |y − x| < rx.

The neighborhoods |y − x| < rx cover [a, b], so we can find a finite cover, say [a, b] ⊂⋃m
j=1(xj − rj , xj + rj). Let Nj be the Nx for xj . Take N = maxj Nj . By the monotonic

decreasing property, if n ≥ N then

fn(y) ≤ fNj (y) ≤ ε if y ∈ (xj − rj , xj + rj).

This is true for all j, which cover [a, b], so fn(y) < ε for all y ∈ [a, b] if n ≥ N .

Additional problem 3(b). For example the functions

fn(x) =


0, x ∈ [0, n],

x− n, x ∈ [n, n+ 1],

1, x ∈ [n,∞)

.


