Additional problems

1. In lecture we use the following fact. Suppose $F(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)$ is a continuous map from $[a, b]$ into \mathbb{R}^{m}. Then

$$
\left|\int_{a}^{b} F(s) d s\right| \leq \int_{a}^{b}|F(s)| d s
$$

Prove this, by taking N large enough so that both integrals are approximated within ϵ (so N depends on ϵ) by their Riemann sum approximation with spacing $\delta=\frac{1}{N}$.
2. Consider a map $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ satisfying $|F(x)-F(y)| \leq L|x-y|$. Consider the sequence of continuous functions $\gamma_{j}:[0, \infty) \rightarrow \mathbb{R}^{m}$ determined by setting $\gamma_{0}(t)=p$ for all t, and the following recursion relation:

$$
\gamma_{j+1}(t)=p+\int_{0}^{t} F\left(\gamma_{j}(s)\right) d s
$$

(a.) Let $M=|F(p)|$. Show by induction that, for all $t \geq 0$ and $j \geq 0$,

$$
\left|\gamma_{j+1}(t)-\gamma_{j}(t)\right| \leq \frac{M L^{j} t^{j+1}}{(j+1)!}
$$

(b.) Use that $\gamma_{n}(t)=p+\sum_{j=1}^{n} \gamma_{j}(t)-\gamma_{j-1}(t)$ to show that $\gamma_{n}(t)$ converges uniformly on the interval $[0, T]$, for each $T<\infty$. (Note: this is weaker than uniform convergence on $[0, \infty)$.)
(c.) Show that $\gamma(t)=\lim _{n \rightarrow \infty} \gamma_{n}(t)$ satisfies

$$
\gamma(t)=p+\int_{0}^{t} F(\gamma(s)) d s \quad \text { for all } t \in[0, \infty)
$$

3. Let $|x|_{1}=\sum_{j=1}^{m}\left|x_{j}\right|$ and $|y|_{\text {max }}=\max _{i}\left|y_{i}\right|$. For a $n \times m$ matrix A show that

$$
\left|T_{A} x\right|_{\max } \leq L|x|_{1} \quad \text { where } \quad L=\max _{i j}\left|A_{i j}\right|
$$

and that (for every matrix A except the 0 matrix) this is the smallest value of L for which this holds. Use this to show that

$$
\left|T_{A} x\right|_{E} \leq L|x|_{E} \quad \text { where } \quad L=\sqrt{m n} \max _{i j}\left|A_{i j}\right|
$$

For each $m \geq 2$, find an example with $n=m$ of A (other than the 0 matrix) where this holds with a smaller value of L, and find another example of A where this is the smallest value of L for which this holds.
4. Let A be a $m \times m$ matrix, and $T_{A}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ the corresponding linear map. Show that the matrix A is invertible if and only if there is some $c>0$ so that
(*) $\quad\left|T_{A} x\right|_{E} \geq c|x|_{E} \quad$ for all $x \in \mathbb{R}^{m}$.
Show that if $(*)$ is true for a positive number c, then $\left|T_{A^{-1}} x\right|_{E} \leq c^{-1}|x|_{E}$ for the same value of c.

