Math 425, Winter 2018, Homework 6 Solutions

Additional problem 1. Consider the partition $x_{j}=a+\frac{j}{N}(b-a)$. This has spacing $(b-a) / N$ which goes to 0 as $N \rightarrow \infty$. So we can write

$$
\left|\int_{a}^{b} F(s) d s\right|=\lim _{N \rightarrow \infty} \frac{(b-a)}{N}\left|\sum_{j=1}^{N} F\left(x_{j}\right)\right| \leq \lim _{N \rightarrow \infty} \frac{(b-a)}{N} \sum_{j=1}^{N}\left|F\left(x_{j}\right)\right|=\int_{a}^{b}|F(s)| d s .
$$

Additional problem 2(a). Start with $\gamma_{0}(t)=p$, and $\gamma_{1}(t)=p+t F(p)$. Then

$$
\left|\gamma_{1}(t)-\gamma_{0}(t)\right|=t|F(p)| \leq M t
$$

This is the case $j=0$. Assume it holds for some j. Then write

$$
\begin{aligned}
\left|\gamma_{j+2}(t)-\gamma_{j+1}(t)\right| & =\left|\int_{0}^{t} F\left(\gamma_{j+1}(s)\right)-F\left(\gamma_{j}(s)\right) d s\right| \\
& \leq \int_{0}^{t}\left|F\left(\gamma_{j+1}(s)\right)-F\left(\gamma_{j}(s)\right)\right| d s \\
& \leq \int_{0}^{t} L\left|\gamma_{j+1}(s)-\gamma_{j}(s)\right| d s \\
& \leq \frac{1}{(j+1)!} \int_{0}^{t} L M L^{j} s^{j+1} d s=\frac{1}{(j+2)!} M L^{j+1} t^{j+2}
\end{aligned}
$$

This is the statement for $j+1$, so the result follows by induction.
Additional problem 2(b). For $t \in[0, T]$ we can bound

$$
\left|\gamma_{j}(t)-\gamma_{j-1}(t)\right| \leq \frac{1}{j!} M L^{j-1} T^{j} \equiv M_{j} .
$$

The M_{j} are summable:

$$
\sum_{j=1}^{\infty} \frac{1}{j!} M L^{j-1} T^{j}=\frac{M}{L}\left(e^{L T}-1\right)
$$

By the Weirstrass M-test the series converges uniformly on $[0, T]$, for any chosen T.
Additional problem 2(c). Let $\gamma_{j}(t) \rightarrow \gamma(t)$ uniformly on $[0, T]$. Then by Lipschitz continuity of F we have $F\left(\gamma_{j}(s)\right) \rightarrow F(\gamma(s))$, uniformly on $[0, T]$. So since integrals of uniform limits are the limit of the integrals, we conclude that

$$
\gamma(t)=\int_{0}^{t} F(\gamma(s)) d s \quad \text { for } t \in[0, T]
$$

However this holds for every chosen value of T, thus it holds for all $t \in \mathbb{R}$.
Additional problem 3. For any i, we have

$$
\left|\left(T_{A} x\right)_{i}\right| \leq \sum_{j=1}^{m}\left|A_{i j}\right|\left|x_{j}\right| \leq\left(\max _{j}\left|A_{i j}\right|\right) \sum_{j=1}^{m}\left|x_{j}\right|=\left(\max _{j}\left|A_{i j}\right|\right)\|x\|_{1} .
$$

So

$$
\max _{i}\left|\left(T_{A} x\right)_{i}\right| \leq\left(\max _{i, j}\left|A_{i j}\right|\right)\|x\|_{1} .
$$

Take $x=e_{j}$, and note $\left\|T_{A} e_{j}\right\|_{\max }=\max _{i}\left|A_{i j}\right|\left\|e_{j}\right\|_{1}$. Assuming $\left|T_{A} e_{j}\right|_{\max } \leq C|x|_{1}$ for all $x=e_{j}$, then we must have $C \geq \max _{i, j}\left|A_{i j}\right|$.
We then note

$$
\left|T_{A} x\right|_{E} \leq \sqrt{n}\left|T_{A} x\right|_{\max } \leq \sqrt{n}\left(\max _{i, j}\left|A_{i j}\right|\right)|x|_{1} \leq \sqrt{n} \sqrt{m}\left(\max _{i, j}\left|A_{i j}\right|\right)|x|_{E}
$$

With A the identity matrix the result holds with $L=1$, but $\sqrt{m^{2}}\left(\max _{i, j}\left|A_{i j}\right|\right)=m$.
If $A_{i j}=1$ for all i, j, and $x=(1,1, \ldots, 1)$, then $T_{A} x=(m, m, \ldots, m)$, so $|x|_{E}=\sqrt{m}$, $\left|T_{A} x\right|_{E}=m \sqrt{m}$, and thus

$$
\left|T_{A} x\right|_{E}=\sqrt{m^{2}}\left(\max _{i, j}\left|A_{i j}\right|\right)|x|_{E}
$$

This example also works when $m \neq n$.
Additional problem 4. If $\left|T_{A} x\right|_{E} \geq c|x|_{E}$ for some $c>0$, this implies that $T_{A} x=0$ only if $x=0$, so A is invertible. Conversely, if A is invertible, let A^{-1} be the inverse matrix. Then there is some C so that for all $y \in \mathbb{R}^{m}$,

$$
\left|T_{A^{-1}} y\right|_{E} \leq C|y|_{E} .
$$

If we plug in $y=T_{A} x$, we get

$$
|x|_{E} \leq C\left|T_{A} x\right|_{E} \quad \Rightarrow \quad\left|T_{A} x\right|_{E} \geq C^{-1}|x|_{E} .
$$

so $(*)$ is true with $c=C^{-1}$.
For the second part, if $\left|T_{A} x\right|_{E} \geq c\left|x_{E}\right|$, then setting $x=T_{A^{-1}} y$ gives

$$
|y|_{E} \geq c\left|T_{A^{-1}} y\right|_{E} \quad \Rightarrow \quad\left|T_{A^{-1}} y\right|_{E} \leq c^{-1}|y|_{E}
$$

