Math 425
Homework 7

Winter 2018
Due Wednesday, March 7

Chapter 5 [Pugh, pg. 366]: 7(c), 8, 17(a), 18.

Additional problems

1. Consider the space of $n \times n$ matrices $\mathcal{M}=\mathbb{R}^{n^{2}}$, that is, n^{2} dimensional Euclidean space. Show that the set of invertible matrices is an open, dense subset of \mathcal{M}. [Use the fact that $\operatorname{det}(A)$ is a polynomial in the coefficients of A, and the invertible matrices are those with $\operatorname{det}(A) \neq 0$.]

Some help on Problem 8(c). Showing that the set of functions $f_{n}(t)$ is closed in $C([0,1])$ is the trickiest part. It would be easier to show they are closed in $C([0,2 \pi])$ so you can do this problem on $[0,2 \pi]$ instead of $[0,1]$ if you prefer.
The idea is that the set f_{n} satisfies $\left\|f_{n}-f_{m}\right\|_{u} \geq c$, for the same $c>0$ for all $m \neq n$. That is, there is some t so $\left|f_{m}(t)-f_{n}(t)\right| \geq c$ if $m \neq n$. The easiest way to prove this is indirectly, by showing that

$$
\int_{0}^{1}\left|f_{n}(t)-f_{m}(t)\right|^{2} d t \geq c^{2}
$$

for some $c>0$ and all $m \neq n$. This is a direct calculation using double-angle formulas and product rules for cos. If you integrate over $[0,2 \pi]$ instead you get equality with $c^{2}=2 \pi$, which is why it's easier in that case. If you want to do it for $[0,1]$, then it is easier to find a value of c that works for $m, n \geq 100$, and write your set as the union of two closed sets.
This proves a lower bound on $\left\|f_{n}-f_{m}\right\|_{u}$, since

$$
\int_{a}^{b}\left|f_{n}(t)-f_{m}(t)\right|^{2} d t \leq(b-a)\left\|f_{n}-f_{m}\right\|_{u}^{2}
$$

Once you know that the points in your set $\left\{f_{n}\right\}$ are separated, the only sequences in this set that can converge must be eventually constant, so the limit will be in the set.

