
Math 425, Winter 2018, Homework 7 Solutions

Pugh, Ch. 5: 7(c). Consider the function

fn(t) =

{
1− nx, 0 ≤ x ≤ 1

n

0, 1
n ≤ x ≤ 1

Then max |f(t)| = 1, but
∫ 1
0 |f(t)| dt = 1

2n . So |fn|1 → 0 but |fn|u = 1.

Pugh, Ch. 5: 8(a). Linearity follows from additivity of the integral. For continuity:∣∣∣∫ x

0
f(t) dt

∣∣∣ ≤ ∫ x

0
|f(t)| dt ≤

∫ 1

0
|f(t)| dt ≤ |f |C0 .

It follows that maxx |T (f)(x)| ≤ |f |C0 . If f(t) = 1 then T (f) = x, and |x|C0 = 1 = |1|C0 , so
the norm of the operator is 1.

Pugh, Ch. 5: 8(b). If fn = cos(nt) then T (fn) = 1
n sin(nt).

Pugh, Ch. 5: 8(c). The set K is bounded since |fn|C0 ≤ 1 for all n. It is not compact

since it is not equicontinuous: to see it is not equicontinouos, note that for any open interval
(a, b) the function fn takes on both 1 and −1 as values if n is large enough, hence there is
no δ so that |fn(t) − fn(x)| < 1

2 for every n and every t ∈ (x − δ, x + δ). To see that K is

closed lets work on [0, 2π], where it holds that |fn− fm|C0 ≥ (2π)−
1
2 if m 6= n. This is done

by a calculation ∫ 2π

0
| cos(nt)− cos(mt)|2 dt = 2π if m 6= n.

It follows that necessarily | cos(nt)− cos(mt)|C0 ≥ 1 for some t, since the integral of |g|2 is
less than 2π |g|2C0 .

Once we have that |fn − fm|C0 ≥ c for some c > 0 (which also holds on [0, 1] but it’s a
harder calculation), then we see that the set K is closed. For if gk is a sequence in K, that
is gk(t) = cos(nkt) for some nk depending on k, then for gk to be convergent to some g we
must have nk constant for k large, say nk = n, so if gk converges to g then g = cos(nt) ∈ K.

Pugh, Ch. 5: 8(d). T (K) is bounded, since |T (fn)|C0 ≤ 1
n . It is also equicontinuous,

since |T (fn)′|C0 = |fn|C0 ≤ 1, so T (fn) is Lipschitz with constant 1 for every n. Thus T (K)
has a compact closure, since the closure of a bounded, equicontinuous family of functions
is bounded and equicontinuous (and closed), hence compact by Arzela-Ascoli. T (K) is not
compact since it is not closed, as T (fn)→ 0 but 0 /∈ T (K).

You can also verify directly that the closure of T (K) is T (K) ∪ {0}, which then is closed
and equicontinuous and bounded, hence compact. Verifying this uses a similar argument to
proving that K is closed: |T (fn)− T (fm)| ≥ cn for some cn > 0 for all m 6= n, so the only
limit of a convergent sequence in T (K) is either one of the elements T (fn) (if the sequence
is eventually constant) or 0 (if there are infinitely many distinct points in the sequence).

Pugh, Ch. 5: 17(a). A simple calculation gives (Df)t = (− sin t, cos t), which never equals

(0, 0). But f(2π)− f(0) = (0, 0).



Pugh, Ch. 5: 18(a). This is just Theorem 5.

Pugh, Ch. 5: 18(b). Let u = (ux, uy). Then

f(tu) =
t4 u3x uy

t4 u4x + t2 u2y
.

If uy 6= 0, then |f(tu)| ≤ t2 u3x/uy, so

lim
t→0

f(tu)− f(0)

t
= 0.

Thus (Df)0(u) = 0 if uy 6= 0. If uy = 0, then f(tu) = 0, so also (Df)0(u) = 0.

To see f is not differentiable at 0, note that if it were then necessarily (Df)0 = 0 by the
above. Consider the curve x = t, y = t2. By the chain rule, the function g(t) = f(t, t2)
would be differentiable in t at t = 0, with derivative g′(0) = 0 there. But f(t, t2) = 1

2 t, so

g′(0) = 1
2 .

Additional problem 1. We let A denote a variable in Rm2
, thought of as a real matrix.

Then det(A) is a polynomial on Rm2
, that is, a sum of products of powers of coordinates

xi for 1 ≤ i ≤ m2. Hence it is continuous, and the set det(A) 6= 0 is an open set (the
preimage of s 6= 0 under A → det(A). To show the set det(A) 6= 0 is dense we show that
the complement, {A : det(A) = 0}, cannot contain an open set. For this, it suffices to show
that if a polynomial on RN vanishes on an open set then it is identically 0 (letting N = m2).

Note that if det(A) = 0 on a neighborhood of some A0, then det(A + A0) = 0 on a
neighborhood of 0. It is also a polynomial (since it is the translate of a polynomial), so we
now need show that if a polynomial p(x) vanishes on a neighborhood of 0 then it vanishes
everywhere.

There are two ways to see this. First, if we write

p(x) =
n∑

i1=0

n∑
i2=0

· · ·
n∑

iN=0

pi1,i2,...,iNx
i1
1 · · ·x

iN
N

Then we can find the coefficients by differentiating and evaluating at x = 0,

pi1,i2,...,iN =
1

i1! · · · iN !
∂i1x1 · · · ∂

iN
xN
p(x)|x=0.

But if p(x) vanishes on a neighborhood of 0 then all of its derivatives vanish at 0.

Alternatively, for each x ∈ RN consider the one dimensional polynomial p(tx) for t ∈ R.
This vanishes on a neighborhood of t = 0, and since a non-zero polynomial can have at
most a finite number of real roots, it must be 0 for all t. Setting t = 1 gives p(x) = 0.


