Math 425, Winter 2018, Homework 7 Solutions

Pugh, Ch. 5: 7(c). Consider the function

$$
f_{n}(t)= \begin{cases}1-n x, & 0 \leq x \leq \frac{1}{n} \\ 0, & \frac{1}{n} \leq x \leq 1\end{cases}
$$

Then $\max |f(t)|=1$, but $\int_{0}^{1}|f(t)| d t=\frac{1}{2 n}$. So $\left|f_{n}\right|_{1} \rightarrow 0$ but $\left|f_{n}\right|_{u}=1$.
Pugh, Ch. 5: 8(a). Linearity follows from additivity of the integral. For continuity:

$$
\left|\int_{0}^{x} f(t) d t\right| \leq \int_{0}^{x}|f(t)| d t \leq \int_{0}^{1}|f(t)| d t \leq|f|_{C^{0}}
$$

It follows that $\max _{x}|T(f)(x)| \leq|f|_{C^{0}}$. If $f(t)=1$ then $T(f)=x$, and $|x|_{C^{0}}=1=|1|_{C^{0}}$, so the norm of the operator is 1 .

Pugh, Ch. 5: $8(\mathrm{~b})$. If $f_{n}=\cos (n t)$ then $T\left(f_{n}\right)=\frac{1}{n} \sin (n t)$.
Pugh, Ch. 5: 8 (c). The set K is bounded since $\left|f_{n}\right|_{C^{0}} \leq 1$ for all n. It is not compact since it is not equicontinuous: to see it is not equicontinouos, note that for any open interval (a, b) the function f_{n} takes on both 1 and -1 as values if n is large enough, hence there is no δ so that $\left|f_{n}(t)-f_{n}(x)\right|<\frac{1}{2}$ for every n and every $t \in(x-\delta, x+\delta)$. To see that K is closed lets work on $[0,2 \pi]$, where it holds that $\left|f_{n}-f_{m}\right|_{C^{0}} \geq(2 \pi)^{-\frac{1}{2}}$ if $m \neq n$. This is done by a calculation

$$
\int_{0}^{2 \pi}|\cos (n t)-\cos (m t)|^{2} d t=2 \pi \quad \text { if } m \neq n
$$

It follows that necessarily $|\cos (n t)-\cos (m t)|_{C^{0}} \geq 1$ for some t, since the integral of $|g|^{2}$ is less than $2 \pi|g|_{C^{0}}^{2}$.
Once we have that $\left|f_{n}-f_{m}\right|_{C^{0}} \geq c$ for some $c>0$ (which also holds on $[0,1]$ but it's a harder calculation), then we see that the set K is closed. For if g_{k} is a sequence in K, that is $g_{k}(t)=\cos \left(n_{k} t\right)$ for some n_{k} depending on k, then for g_{k} to be convergent to some g we must have n_{k} constant for k large, say $n_{k}=n$, so if g_{k} converges to g then $g=\cos (n t) \in K$.

Pugh, Ch. 5: $8(\mathrm{~d}) . T(K)$ is bounded, since $\left|T\left(f_{n}\right)\right|_{C^{0}} \leq \frac{1}{n}$. It is also equicontinuous, since $\left|T\left(f_{n}\right)^{\prime}\right|_{C^{0}}=\left|f_{n}\right|_{C^{0}} \leq 1$, so $T\left(f_{n}\right)$ is Lipschitz with constant 1 for every n. Thus $T(K)$ has a compact closure, since the closure of a bounded, equicontinuous family of functions is bounded and equicontinuous (and closed), hence compact by Arzela-Ascoli. $T(K)$ is not compact since it is not closed, as $T\left(f_{n}\right) \rightarrow 0$ but $0 \notin T(K)$.
You can also verify directly that the closure of $T(K)$ is $T(K) \cup\{0\}$, which then is closed and equicontinuous and bounded, hence compact. Verifying this uses a similar argument to proving that K is closed: $\left|T\left(f_{n}\right)-T\left(f_{m}\right)\right| \geq c_{n}$ for some $c_{n}>0$ for all $m \neq n$, so the only limit of a convergent sequence in $T(K)$ is either one of the elements $T\left(f_{n}\right)$ (if the sequence is eventually constant) or 0 (if there are infinitely many distinct points in the sequence).

Pugh, Ch. 5: 17(a). A simple calculation gives $(D f)_{t}=(-\sin t, \cos t)$, which never equals $(0,0)$. But $f(2 \pi)-f(0)=(0,0)$.

Pugh, Ch. 5: 18(a). This is just Theorem 5.
Pugh, Ch. 5: 18(b). Let $u=\left(u_{x}, u_{y}\right)$. Then

$$
f(t u)=\frac{t^{4} u_{x}^{3} u_{y}}{t^{4} u_{x}^{4}+t^{2} u_{y}^{2}}
$$

If $u_{y} \neq 0$, then $|f(t u)| \leq t^{2} u_{x}^{3} / u_{y}$, so

$$
\lim _{t \rightarrow 0} \frac{f(t u)-f(0)}{t}=0
$$

Thus $(D f)_{0}(u)=0$ if $u_{y} \neq 0$. If $u_{y}=0$, then $f(t u)=0$, so also $(D f)_{0}(u)=0$.
To see f is not differentiable at 0 , note that if it were then necessarily $(D f)_{0}=0$ by the above. Consider the curve $x=t, y=t^{2}$. By the chain rule, the function $g(t)=f\left(t, t^{2}\right)$ would be differentiable in t at $t=0$, with derivative $g^{\prime}(0)=0$ there. But $f\left(t, t^{2}\right)=\frac{1}{2} t$, so $g^{\prime}(0)=\frac{1}{2}$.

Additional problem 1. We let A denote a variable in $\mathbb{R}^{m^{2}}$, thought of as a real matrix. Then $\operatorname{det}(A)$ is a polynomial on $\mathbb{R}^{m^{2}}$, that is, a sum of products of powers of coordinates x_{i} for $1 \leq i \leq m^{2}$. Hence it is continuous, and the $\operatorname{set} \operatorname{det}(A) \neq 0$ is an open set (the preimage of $s \neq 0$ under $A \rightarrow \operatorname{det}(A)$. To show the set $\operatorname{det}(A) \neq 0$ is dense we show that the complement, $\{A: \operatorname{det}(A)=0\}$, cannot contain an open set. For this, it suffices to show that if a polynomial on \mathbb{R}^{N} vanishes on an open set then it is identically 0 (letting $N=m^{2}$).
Note that if $\operatorname{det}(A)=0$ on a neighborhood of some A_{0}, then $\operatorname{det}\left(A+A_{0}\right)=0$ on a neighborhood of 0 . It is also a polynomial (since it is the translate of a polynomial), so we now need show that if a polynomial $p(x)$ vanishes on a neighborhood of 0 then it vanishes everywhere.
There are two ways to see this. First, if we write

$$
p(x)=\sum_{i_{1}=0}^{n} \sum_{i_{2}=0}^{n} \cdots \sum_{i_{N}=0}^{n} p_{i_{1}, i_{2}, \ldots, i_{N}} x_{1}^{i_{1}} \cdots x_{N}^{i_{N}}
$$

Then we can find the coefficients by differentiating and evaluating at $x=0$,

$$
p_{i_{1}, i_{2}, \ldots, i_{N}}=\left.\frac{1}{i_{1}!\cdots i_{N}!} \partial_{x_{1}}^{i_{1}} \cdots \partial_{x_{N}}^{i_{N}} p(x)\right|_{x=0}
$$

But if $p(x)$ vanishes on a neighborhood of 0 then all of its derivatives vanish at 0 .
Alternatively, for each $x \in \mathbb{R}^{N}$ consider the one dimensional polynomial $p(t x)$ for $t \in \mathbb{R}$. This vanishes on a neighborhood of $t=0$, and since a non-zero polynomial can have at most a finite number of real roots, it must be 0 for all t. Setting $t=1$ gives $p(x)=0$.

