Math 425, Winter 2018, Homework 7 Solutions

Pugh, Ch. 5: 7(c). Consider the function
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Then max |f(t)] = 1, but [ |f(t)|dt = 5. So [fal1 — 0 but |fuls = 1.

Pugh, Ch. 5: 8(a). Linearity follows from additivity of the integral. For continuity:

‘/Omf(t)dt‘ S/Om|f(t)]dt§/01|f(t)|dt§ 1l co.

It follows that max, |T'(f)(z)| < |f|co. If f(t) =1 then T'(f) = x, and |z|co = 1 = |1|co, s0
the norm of the operator is 1.

Pugh, Ch. 5: 8(b). If f,, = cos(nt) then T(f,) = % sin(nt).

Pugh, Ch. 5: 8(c). The set K is bounded since |f,|co < 1 for all n. It is not compact
since it is not equicontinuous: to see it is not equicontinouos, note that for any open interval
(a,b) the function f, takes on both 1 and —1 as values if n is large enough, hence there is
no § so that |fn(t) — fu(z)| < 1 for every n and every t € (z — §,z + ). To see that K is

closed lets work on [0, 27, where it holds that | f,, — fin|co > (2%)_% if m # n. This is done
by a calculation

2w
/ | cos(nt) — cos(mt)|?dt = 2w if m # n.
0

It follows that necessarily | cos(nt) — cos(mt)|co > 1 for some ¢, since the integral of |g|? is
less than 27 |g|Z,.

Once we have that |f, — fim|co > ¢ for some ¢ > 0 (which also holds on [0, 1] but it’s a
harder calculation), then we see that the set K is closed. For if g is a sequence in K, that
is gx(t) = cos(ngt) for some ny depending on k, then for gi to be convergent to some g we
must have ny constant for k large, say ny = n, so if g, converges to g then g = cos(nt) € K.

Pugh, Ch. 5: 8(d). T(K) is bounded, since |T(f,)[co < L. It is also equicontinuous,
since |T(fn) |co = |fulco < 1, so T(fy) is Lipschitz with constant 1 for every n. Thus T'(K)
has a compact closure, since the closure of a bounded, equicontinuous family of functions

is bounded and equicontinuous (and closed), hence compact by Arzela-Ascoli. T'(K) is not
compact since it is not closed, as T'(f,) — 0 but 0 ¢ T'(K).

You can also verify directly that the closure of T'(K) is T'(K) U {0}, which then is closed
and equicontinuous and bounded, hence compact. Verifying this uses a similar argument to
proving that K is closed: |T'(fn) — T'(fm)| > ¢, for some ¢, > 0 for all m # n, so the only
limit of a convergent sequence in T'(K) is either one of the elements T'(f,,) (if the sequence
is eventually constant) or 0 (if there are infinitely many distinct points in the sequence).

Pugh, Ch. 5: 17(a). A simple calculation gives (D f); = (—sint, cost), which never equals
(0,0). But f(2m) — £(0) = (0,0).



Pugh, Ch. 5: 18(a). This is just Theorem 5.

Pugh, Ch. 5: 18(b). Let u = (ug, uy). Then
ttudu
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If uy # 0, then |f(tu)] < t2ud/uy, so

=0.

Thus (D f)o(u) = 0 if uy # 0. If uy, =0, then f(tu) =0, so also (Df)o(u) = 0.

To see f is not differentiable at 0, note that if it were then necessarily (D f)o by the
above. Consider the curve z = t, y = t2. By the chain rule, the function g(¢ f(t, %)
would be differentiable in ¢ at ¢ = 0, with derivative ¢’(0) = 0 there. But f(¢,t%) = 3¢, so

g'(0) = 3.

=0

Additional problem 1. We let A denote a variable in Rmz, thought of as a real matrix.

Then det(A) is a polynomial on Rm2, that is, a sum of products of powers of coordinates
z; for 1 < i < m?. Hence it is continuous, and the set det(A4) # 0 is an open set (the
preimage of s # 0 under A — det(A). To show the set det(A) # 0 is dense we show that
the complement, {A : det(A) = 0}, cannot contain an open set. For this, it suffices to show
that if a polynomial on R"V vanishes on an open set then it is identically 0 (letting N = m?).

Note that if det(4) = 0 on a neighborhood of some Aj, then det(A + Ap) = 0 on a
neighborhood of 0. It is also a polynomial (since it is the translate of a polynomial), so we
now need show that if a polynomial p(z) vanishes on a neighborhood of 0 then it vanishes
everywhere.

There are two ways to see this. First, if we write
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Then we can find the coeflicients by differentiating and evaluating at « = 0,
Pirsinvein = 1O+ 0P oo,
But if p(x) vanishes on a neighborhood of 0 then all of its derivatives vanish at 0.
Alternatively, for each z € RY consider the one dimensional polynomial p(tz) for ¢ € R.

This vanishes on a neighborhood of t = 0, and since a non-zero polynomial can have at
most a finite number of real roots, it must be 0 for all ¢. Setting ¢t = 1 gives p(z) = 0.



