Math 425 Midterm Solutions, Winter 2018

1. Find the radius of convergence of the series $\sum_{k=0}^{\infty}\left(2+(-1)^{k}\right)^{k} x^{2 k}$.

Solution. The coefficient a_{k} of x^{k} is 0 if k is odd, and $a_{k}=3^{\frac{k}{2}}$ for k divisible by 4, and $a_{k}=2$ for k even but not divisible by 4 . So

$$
R=\limsup _{k \rightarrow \infty}\left|a_{k}\right|^{1 / k}=3^{\frac{1}{2}}
$$

2. Suppose that $g:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $g(1)=0$. Show that:

$$
x^{n} g(x) \rightarrow 0 \text { uniformly on }[0,1]
$$

Solution. Given $\epsilon>0$, find $r<1$ so that $|g(x)|<\epsilon$ if $x \in[r, 1]$. Then $\left|x^{n} g(x)\right|<\epsilon$ for $x \in[r, 1]$ since $\left|x^{n}\right|<1$ there.
For $x \in[0, r]$, we have $\left|x^{n} g(x)\right|<M r^{n}$, where $M=\max |g(x)|$. Since $r<1$, there is N so that $M r^{n}<\epsilon$ if $n \geq N$. So if $n \geq N$ we have $\left|x^{n} g(x)\right|<\epsilon$ for all $x \in[0,1]$.
3. Let \mathcal{F} be the set of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ that satisfy

$$
f(0)=0, \quad|f(x)-f(y)| \leq|x-y|^{\frac{1}{2}} \text { for all } x, y \in[0,1] .
$$

Show that \mathcal{F} is a compact subset of $C^{0}([0,1])$ with the uniform norm.
Solution. By Arzela-Ascoli we need show that \mathcal{F} is a bounded, equicontinuous, and closed subset of $C^{0}([0,1])$.
Bounded. This means there is some M so that $\|f\|_{u} \leq M$ for every $f \in \mathcal{F}$. This is true with $M=1$ since $f(0)=0$ and $|f(x)-f(0)| \leq|x-0|^{\frac{1}{2}} \leq 1$.
Equicontinuous. Given $\epsilon>0$ let $\delta=\epsilon^{2}$. Then $|x-y|<\delta$ gives, for every $f \in \mathcal{F}$, $|f(x)-f(y)| \leq|x-y|^{\frac{1}{2}}<\epsilon$.
Closed. We need show that if $f_{n} \in \mathcal{F}$ and $\left\|f-f_{n}\right\|_{u} \rightarrow 0$ then $f \in \mathcal{F}$. It is easy to see that $f(0)=0$, since $f_{n}(0)=0$ for all n. To check the other condition, consider any $x, y \in[0,1]$ and write

$$
|f(x)-f(y)|=\lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{n}(y)\right| \leq|x-y|^{\frac{1}{2}}
$$

where we use the condition $f_{n} \in \mathcal{F}$ for all n.
4. Assume that $f(x):[0, \infty) \rightarrow[0, \infty)$ is a non-negative, decreasing continuous function, that is $f(x) \geq f(y) \geq 0$ if $0 \leq x \leq y$, and assume that

$$
\int_{0}^{\infty} f(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{n} f(x) d x \quad \text { converges. }
$$

Show that the series $g(x)=\sum_{n=0}^{\infty} f(x+n)$ converges uniformly for $x \in[0,1]$, and that

$$
\int_{0}^{1} g(x) d x=\int_{0}^{\infty} f(x) d x
$$

Solution. Let $M_{k}=f(k)$. Then $|f(x+k)|=f(x+k) \leq f(k)$ for $x \in[0,1]$, so the Weirstrass M-test will show that $\sum_{k=0}^{\infty} f(x+k)$ converges uniformly on [0,1] if we show that $\sum_{k=0}^{\infty} f(k)$ converges. We can use the integral test and note that

$$
0 \leq f(k) \leq \int_{k-1}^{k} f(x) d x \quad \Rightarrow \quad \sum_{k=1}^{n} f(k) \leq \int_{0}^{n} f(x) d x
$$

Since the right hand side is increasing in n and converges, so does $\sum_{k=1}^{\infty} f(k)$, and consequently so does $\sum_{k=0}^{\infty} f(k)$.
Finally, since we have uniform convergence of the sum,

$$
\begin{aligned}
\int_{0}^{1} g(x) d x=\int_{0}^{1}\left(\sum_{k=0}^{\infty} f(x+k)\right) d x=\sum_{k=0}^{\infty} \int_{0}^{1} f(x+k) d x & =\sum_{k=0}^{\infty} \int_{k}^{k+1} f(x) d x \\
& =\lim _{n \rightarrow \infty} \int_{0}^{n} f(x) d x=\int_{0}^{\infty} f(x) d x
\end{aligned}
$$

