Math 425 Midterm Solutions, Winter 2018

1. Find the radius of convergence of the series $\sum_{k=0}^{\infty} (2 + (-1)^k)^k x^{2k}$.

Solution. The coefficient a_k of x^k is 0 if k is odd, and $a_k = 3^{\frac{k}{2}}$ for k divisible by 4, and $a_k = 2$ for k even but not divisible by 4. So

$$R = \limsup_{k \to \infty} |a_k|^{1/k} = 3^{\frac{1}{2}}.$$

2. Suppose that $g:[0,1] \to \mathbb{R}$ is a continuous function such that g(1) = 0. Show that:

$$x^n g(x) \to 0$$
 uniformly on $[0,1]$

Solution. Given $\epsilon > 0$, find r < 1 so that $|g(x)| < \epsilon$ if $x \in [r, 1]$. Then $|x^n g(x)| < \epsilon$ for $x \in [r, 1]$ since $|x^n| < 1$ there.

For $x \in [0, r]$, we have $|x^n g(x)| < M r^n$, where $M = \max |g(x)|$. Since r < 1, there is N so that $M r^n < \epsilon$ if $n \ge N$. So if $n \ge N$ we have $|x^n g(x)| < \epsilon$ for all $x \in [0, 1]$.

3. Let \mathcal{F} be the set of continuous functions $f: [0,1] \to \mathbb{R}$ that satisfy

$$f(0) = 0, \quad |f(x) - f(y)| \le |x - y|^{\frac{1}{2}} \text{ for all } x, y \in [0, 1].$$

Show that \mathcal{F} is a compact subset of $C^0([0,1])$ with the uniform norm.

Solution. By Arzela-Ascoli we need show that \mathcal{F} is a bounded, equicontinuous, and closed subset of $C^0([0,1])$.

Bounded. This means there is some M so that $||f||_u \leq M$ for every $f \in \mathcal{F}$. This is true with M = 1 since f(0) = 0 and $|f(x) - f(0)| \leq |x - 0|^{\frac{1}{2}} \leq 1$.

Equicontinuous. Given $\epsilon > 0$ let $\delta = \epsilon^2$. Then $|x - y| < \delta$ gives, for every $f \in \mathcal{F}$, $|f(x) - f(y)| \le |x - y|^{\frac{1}{2}} < \epsilon$.

Closed. We need show that if $f_n \in \mathcal{F}$ and $||f - f_n||_u \to 0$ then $f \in \mathcal{F}$. It is easy to see that f(0) = 0, since $f_n(0) = 0$ for all n. To check the other condition, consider any $x, y \in [0, 1]$ and write

$$|f(x) - f(y)| = \lim_{n \to \infty} |f_n(x) - f_n(y)| \le |x - y|^{\frac{1}{2}},$$

where we use the condition $f_n \in \mathcal{F}$ for all n.

4. Assume that $f(x) : [0, \infty) \to [0, \infty)$ is a non-negative, decreasing continuous function, that is $f(x) \ge f(y) \ge 0$ if $0 \le x \le y$, and assume that

$$\int_0^\infty f(x) \, dx = \lim_{n \to \infty} \int_0^n f(x) \, dx \quad \text{converges}$$

Show that the series $g(x) = \sum_{n=0}^{\infty} f(x+n)$ converges uniformly for $x \in [0,1]$, and that

$$\int_0^1 g(x) \, dx \, = \, \int_0^\infty f(x) \, dx \, .$$

Solution. Let $M_k = f(k)$. Then $|f(x+k)| = f(x+k) \leq f(k)$ for $x \in [0,1]$, so the Weirstrass M-test will show that $\sum_{k=0}^{\infty} f(x+k)$ converges uniformly on [0,1] if we show that $\sum_{k=0}^{\infty} f(k)$ converges. We can use the integral test and note that

$$0 \le f(k) \le \int_{k-1}^k f(x) \, dx \quad \Rightarrow \quad \sum_{k=1}^n f(k) \le \int_0^n f(x) \, dx.$$

Since the right hand side is increasing in n and converges, so does $\sum_{k=1}^{\infty} f(k)$, and consequently so does $\sum_{k=0}^{\infty} f(k)$.

Finally, since we have uniform convergence of the sum,

$$\int_0^1 g(x) \, dx = \int_0^1 \left(\sum_{k=0}^\infty f(x+k) \right) \, dx = \sum_{k=0}^\infty \int_0^1 f(x+k) \, dx = \sum_{k=0}^\infty \int_k^{k+1} f(x) \, dx$$
$$= \lim_{n \to \infty} \int_0^n f(x) \, dx = \int_0^\infty f(x) \, dx.$$