
Math 425 Midterm Solutions, Winter 2018

1. Find the radius of convergence of the series
∞∑
k=0

(
2 + (−1)k

)k
x2k.

Solution. The coefficient ak of xk is 0 if k is odd, and ak = 3
k
2 for k divisible by 4, and

ak = 2 for k even but not divisible by 4. So

R = lim sup
k→∞

|ak|1/k = 3
1
2 .

2. Suppose that g : [0, 1]→ R is a continuous function such that g(1) = 0. Show that:

xng(x)→ 0 uniformly on [0, 1]

Solution. Given ε > 0, find r < 1 so that |g(x)| < ε if x ∈ [r, 1]. Then |xng(x)| < ε for

x ∈ [r, 1] since |xn| < 1 there.

For x ∈ [0, r], we have |xng(x)| < M rn, where M = max |g(x)|. Since r < 1, there is N so

that M rn < ε if n ≥ N . So if n ≥ N we have |xng(x)| < ε for all x ∈ [0, 1].

3. Let F be the set of continuous functions f : [0, 1]→ R that satisfy

f(0) = 0, |f(x)− f(y)| ≤ |x− y|
1
2 for all x, y ∈ [0, 1].

Show that F is a compact subset of C0([0, 1]) with the uniform norm.

Solution. By Arzela-Ascoli we need show that F is a bounded, equicontinuous, and closed

subset of C0([0, 1]).

Bounded. This means there is some M so that ‖f‖u ≤ M for every f ∈ F . This is true

with M = 1 since f(0) = 0 and |f(x)− f(0)| ≤ |x− 0|
1
2 ≤ 1.

Equicontinuous. Given ε > 0 let δ = ε2. Then |x − y| < δ gives, for every f ∈ F ,

|f(x)− f(y)| ≤ |x− y|
1
2 < ε.

Closed. We need show that if fn ∈ F and ‖f − fn‖u → 0 then f ∈ F . It is easy to see that

f(0) = 0, since fn(0) = 0 for all n. To check the other condition, consider any x, y ∈ [0, 1]

and write

|f(x)− f(y)| = lim
n→∞

|fn(x)− fn(y)| ≤ |x− y|
1
2 ,

where we use the condition fn ∈ F for all n.



4. Assume that f(x) : [0,∞) → [0,∞) is a non-negative, decreasing continuous function,

that is f(x) ≥ f(y) ≥ 0 if 0 ≤ x ≤ y, and assume that∫ ∞
0

f(x) dx = lim
n→∞

∫ n

0
f(x) dx converges.

Show that the series g(x) =
∞∑
n=0

f(x+ n) converges uniformly for x ∈ [0, 1], and that

∫ 1

0
g(x) dx =

∫ ∞
0

f(x) dx .

Solution. Let Mk = f(k). Then |f(x + k)| = f(x + k) ≤ f(k) for x ∈ [0, 1], so the

Weirstrass M-test will show that
∑∞

k=0 f(x + k) converges uniformly on [0, 1] if we show

that
∑∞

k=0 f(k) converges. We can use the integral test and note that

0 ≤ f(k) ≤
∫ k

k−1
f(x) dx ⇒

n∑
k=1

f(k) ≤
∫ n

0
f(x) dx.

Since the right hand side is increasing in n and converges, so does
∑∞

k=1 f(k), and conse-

quently so does
∑∞

k=0 f(k).

Finally, since we have uniform convergence of the sum,∫ 1

0
g(x) dx =

∫ 1

0

( ∞∑
k=0

f(x+ k)
)
dx =

∞∑
k=0

∫ 1

0
f(x+ k) dx =

∞∑
k=0

∫ k+1

k
f(x) dx

= lim
n→∞

∫ n

0
f(x) dx =

∫ ∞
0

f(x) dx.


