Webpage:

https://sites.math.washington.edu/~hart/m427/
Email: hfsmith@uw.edu

Text: Complex Variables, Joseph Taylor (AMS, 2011)

Office Hours: Padelford C-447, MWF 4:00-5:00 pm.

Grading:

- Midterm, Friday November 1: 30\%
- Final Exam, Thursday December 12: 50\%
- Weekly Homework: 20\%

Lecture 1: Complex Arithmetic

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Complex Numbers

Quick definition of a complex number:

Something of the form $x+i y$, where x and y are real numbers.

- x is called the real part: $x=\operatorname{Re}(x+i y)$
- y is the imaginary part: $y=\operatorname{Im}(x+i y)$

Rules for complex arithmetic:
Apply usual rules for addition and multiplication, plus the rule

$$
i^{2}=-1
$$

Constructive definition:

Complex number \equiv pair of real numbers (x, y), and define

$$
\begin{aligned}
& (u, v)+(x, y)=(u+x, v+y) \\
& (u, v) \times(x, y)=(u x-v y, u y+v x)
\end{aligned}
$$

Verify that rules of arithmetic hold:

- addition \& multiplication are commutative, associative
- multiplication distributes over addition

Complex numbers contain the reals: identify $x \equiv(x, 0)$
Introduce notation: $i=(0,1)$, then

- $i^{2}=(0,1) \times(0,1)=(-1,0) \equiv-1$
- $x+i y=(x, 0)+(0,1) \times(y, 0)=(x, 0)+(0, y)=(x, y)$

Conjugation

Definition

If $z=x+i y$, its conjugate is $\bar{z}=x-i y$.

Properties:

- $\overline{z+w}=\bar{z}+\bar{w}$
- $\overline{z W}=\bar{z} \bar{w}$
- $z+\bar{z}=2 \operatorname{Re}(z), \quad z-\bar{z}=2 i \operatorname{lm}(z)$
- If $z=x+i y$, then $z \bar{z}=x^{2}+y^{2}$
- If $z=x+i y, w=u+i v$ then
$\operatorname{Re}(z \bar{w})=x u+y v=(x, y) \cdot(u, v) \leftarrow \operatorname{dot}$ product

Modulus and the triangle inequality

Definition

If $z=x+i y$, its modulus is $|z|=\sqrt{x^{2}+y^{2}}=\sqrt{z \bar{z}}$.

- If $z=x$ is real, then $|z|=|x|$ is the absolute value of x.
- $|\bar{z}|=|z|, \quad|\operatorname{Re}(z)| \leq|z|,|\operatorname{lm}(z)| \leq|z|$.
- $|z w|=|z||w|$.

$$
|z w|^{2}=z w \overline{z w}=z \bar{z} w \bar{w}=|z|^{2}|w|^{2}
$$

$\bullet|z+w| \leq|z|+|w|$.

$$
\begin{aligned}
|z+w|^{2}=(z+w)(\bar{z}+\bar{w}) & =|z|^{2}+z \bar{w}+\bar{z} w+|w|^{2} \\
& =|z|^{2}+2 \operatorname{Re}(z \bar{w})+|w|^{2} \\
& \leq|z|^{2}+2|z||w|+|w|^{2} \\
& =(|z|+|w|)^{2}
\end{aligned}
$$

Complex division

$$
z \neq 0: \quad z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}
$$

Complex numbers are a Field:

- Can add, subtract, multiply, divide (except by 0)
- Addition and Multiplication are associative, commutative
- Multiplication distributes over Addition

Unlike the reals, cannot order the complex numbers

- No suitable notion of $z>w$

