Webpage:

https://sites.math.washington.edu/~hart/m427/

Email: hfsmith@uw.edu

Text: Complex Variables, Joseph Taylor (AMS, 2011)

Office Hours: Padelford C-447, MWF 4:00-5:00 pm.

Grading:

- Midterm, Friday November 1: 30%
- Final Exam, Thursday December 12: 50%
- Weekly Homework: 20%

Lecture 1: Complex Arithmetic

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Quick definition of a complex number:

Something of the form x + iy, where x and y are real numbers.

- x is called the *real* part: x = Re(x + iy)
- y is the *imaginary* part: y = Im(x + iy)

Rules for complex arithmetic:

Apply usual rules for addition and multiplication, plus the rule

$$i^2 = -1$$

Constructive definition:

Complex number \equiv pair of real numbers (*x*, *y*), and define

$$(u,v)+(x,y)=(u+x,v+y)$$

$$(u, v) \times (x, y) = (ux - vy, uy + vx)$$

Verify that rules of arithmetic hold:

- addition & multiplication are commutative, associative
- multiplication distributes over addition

Complex numbers contain the reals: identify $x \equiv (x, 0)$

Introduce notation: i = (0, 1), then

•
$$i^2 = (0,1) \times (0,1) = (-1,0) \equiv -1$$

•
$$x + iy = (x, 0) + (0, 1) \times (y, 0) = (x, 0) + (0, y) = (x, y)$$

Conjugation

Definition

If
$$z = x + iy$$
, its conjugate is $\overline{z} = x - iy$.

Properties:

•
$$\overline{Z+W} = \overline{Z} + \overline{W}$$

•
$$\overline{ZW} = \overline{Z} \overline{W}$$

•
$$z + \overline{z} = 2 \operatorname{Re}(z), \ z - \overline{z} = 2i \operatorname{Im}(z)$$

• If
$$z = x + iy$$
, then $z \overline{z} = x^2 + y^2$

• If
$$z = x + iy$$
, $w = u + iv$ then

 $\operatorname{Re}(z\overline{w}) = xu + yv = (x, y) \cdot (u, v) \quad \leftarrow \operatorname{dot} \operatorname{product}$

Modulus and the triangle inequality

Definition

If
$$z = x + iy$$
, its modulus is $|z| = \sqrt{x^2 + y^2} = \sqrt{z \overline{z}}$.

- If z = x is real, then |z| = |x| is the absolute value of x.
- $|\overline{z}| = |z|$, $|\operatorname{\mathsf{Re}}(z)| \le |z|$, $|\operatorname{\mathsf{Im}}(z)| \le |z|$.

$$\bullet |zw| = |z||w|$$

$$|zw|^2 = zw\overline{zw} = z\,\overline{z}\,w\overline{w} = |z|^2|w|^2$$

 $\bullet |z+w| \leq |z|+|w|.$

$$\begin{aligned} |z+w|^2 &= (z+w)(\overline{z}+\overline{w}) = |z|^2 + z\overline{w} + \overline{z}w + |w|^2 \\ &= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2 \\ &\leq |z|^2 + 2|z||w| + |w|^2 \\ &= (|z| + |w|)^2 \end{aligned}$$

Complex division

$$z \neq 0$$
: $z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$

Complex numbers are a Field:

- Can add, subtract, multiply, divide (except by 0)
- Addition and Multiplication are associative, commutative
- Multiplication distributes over Addition

Unlike the reals, cannot order the complex numbers

No suitable notion of z > w