Lecture 10: The Cauchy-Riemann equations

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Cauchy-Riemann equations.

We will write w = x + iy, and express

$$f(x+iy) = u(x,y)+iv(x,y)$$

where u(x, y) and v(x, y) are real-valued functions on \mathbb{R}^2 .

Consider z = w + h, where *h* is a real number. Then

$$\frac{f(z) - f(w)}{z - w} = \frac{u(x + h, y) - u(x, y)}{h} + i \frac{v(x + h, y) - v(x, y)}{h}$$

If *f* is differentiable at *w*, taking the limit as $h \rightarrow 0$ gives

$$f'(x+iy) = \partial_x u(x,y) + i \partial_x v(x,y).$$

Consider z = w + ih, where *h* is a real number. Then

$$\frac{f(z) - f(w)}{z - w} = \frac{u(x, y + h) - u(x, y)}{ih} + i \frac{v(x, y + h) - v(x, y)}{ih}$$

If f'(x + iy) exists, then taking the limit as $h \rightarrow 0$ gives

$$f'(x+iy) = -i\partial_y u(x,y) + \partial_y v(x,y).$$

Thus:
$$\partial_x u(x,y) + i \partial_x v(x,y) = -i \partial_y u(x,y) + \partial_y v(x,y)$$
, so

Cauchy-Riemann equations: if f = u + iv is analytic, then

 $\partial_x u(x,y) = \partial_y v(x,y), \qquad \partial_y u(x,y) = -\partial_x v(x,y).$

C-R equations imply analyticity

Theorem: suppose
$$f(x + iy) = u(x, y) + iv(x, y)$$

If u and v are differentiable on E, then f is analytic on E if

$$\partial_x u(x,y) = \partial_y v(x,y), \qquad \partial_y u(x,y) = -\partial_x v(x,y).$$

Example:

$$e^{x+iy} = e^x(\cos y + i\sin y)$$

$$u(x,y) = e^x \cos y, \qquad v(x,y) = e^x \sin y.$$

$$\partial_x u(x,y) = e^x \cos y = \partial_y v(x,y)$$

$$\partial_y u(x,y) = -e^x \sin y = \partial_x v(x,y)$$

The derivative of arg(z)

Lemma

For any branch of
$$arg(x, y) = arg(x + iy)$$
, on $\mathbb{C} \setminus \{cut-line\}$

$$\partial_x \operatorname{arg}(x, y) = \frac{-y}{x^2 + y^2}, \qquad \partial_y \operatorname{arg}(x, y) = \frac{x}{x^2 + y^2}.$$

Proof. It suffices to prove it near each point for some branch, since different branches differ by a constant $2\pi k$.

- For x > 0 choose arg(x, y) = arctan(y/x).
- For x < 0 choose $arg(x, y) = arctan(y/x) + \pi$.
- For y > 0 choose arg(x, y) = arccot(x/y).
- For y < 0 choose $arg(x, y) = arccot(x/y) + \pi$.

Derivative of log z

Principal branch: $\log(z) = \log |z| + i \arg_{(-\pi,\pi)}(z)$

$$u(x,y) = \frac{1}{2}\log(x^2 + y^2), \qquad v(x,y) = \arg_{(-\pi,\pi]}(x,y).$$

C-R holds, partial derivatives are continuous on $\mathbb{C}\setminus(-\infty,0],$ so

$$(\log z)' = \partial_x u + i\partial_x v = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2} = \frac{1}{x + iy}$$

 $(\log z)' = \frac{1}{z}$

This rule holds for every branch of log *z*, off its cut-line.

Principal branch: $z^{\frac{1}{2}} = e^{\frac{1}{2}\log z}$ (principal branch of log) By chain rule:

$$\left(z^{\frac{1}{2}}\right)' = e^{\frac{1}{2}\log z} \cdot \frac{1}{2} \left(\log z\right)' = \frac{1}{2} z^{\frac{1}{2}} z^{-1}$$

Writing
$$z^{-1} = e^{-\log z}$$
, we see $z^{\frac{1}{2}} z^{-1} = e^{-\frac{1}{2}\log z}$,

$$\left(Z^{\frac{1}{2}}\right)' = \frac{1}{2} Z^{-\frac{1}{2}}$$

where $z^{-\frac{1}{2}}$ is also the principal branch.