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Cauchy-Riemann equations.

We will write w = x + iy, and express

f(x+1iy) = u(x,y)+iv(x,y) )

where u(x, y) and v(x, y) are real-valued functions on R2.

Consider z = w + h, where his a real number. Then
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If f is differentiable at w, taking the limit as h — 0 gives

f'(x +iy) = oxu(x,y) + i0xv(X,y). J




Consider z = w + ih, where his a real number. Then
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If f(x+ iy) exists, then taking the limit as h — 0 gives

fl(x+ly) = —idyu(x,y) + dyv(x,y). ]

Thus: Oxu(x,y) + ioxv(x,y) = —idyu(x,y) + Oyv(x,y), SO

Cauchy-Riemann equations: if f = u + iv is analytic, then

oxu(x,y) = oyv(x,y), oyu(x,y) = —oxv(x,y).




C-R equations imply analyticity

Theorem: suppose f(x + iy) = u(x,y) + iv(x, y)

If uand v are differentiable on E, then f is analytic on E if

Oxu(x,y) = oyv(x,y),  Opu(x,y) = =0xv(X,y).

Example: _
e’V = eX(cosy +isiny)

u(x,y) = eXcosy,  v(x,y) = e*siny. J

oxu(x,y) = e*cosy = 9,v(x,y)

dyu(x,y) = —e*siny = dxv(x,y)



The derivative of arg(z)

For any branch of arg(x, y) = arg(x + iy), on C\ {cut-line}
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Proof. It suffices to prove it near each point for some branch,
since different branches differ by a constant 27k.

e For x > 0 choose arg(x,y) = arctan(y/x).

e For x < 0 choose arg(x,y) = arctan(y/x) + .

e For y > 0 choose arg(x,y) = arccot(x/y).

e For y < 0 choose arg(x,y) = arccot(x/y) + .



Derivative of log z

Principal branch: log(z) = log|z| + iarg_, »(2)

U(Xay) = %Iog(X2+y2)7 V(Xay) = arg(fﬂ',ﬂ'](x7y)' J

C-R holds, partial derivatives are continuous on C\ (—oc, 0], so

S

(logz) = Oxu+ iOxv =
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This rule holds for every branch of log z, off its cut-line.



Derivative of z2

Principal branch: 72 = g2'092 (principal branch of log)

By chain rule:
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where z~2 is also the principal branch.



