Lecture 10: The Cauchy-Riemann equations

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Cauchy-Riemann equations.

We will write $w=x+i y$, and express

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

where $u(x, y)$ and $v(x, y)$ are real-valued functions on \mathbb{R}^{2}.
Consider $z=w+h$, where h is a real number. Then

$$
\frac{f(z)-f(w)}{z-w}=\frac{u(x+h, y)-u(x, y)}{h}+i \frac{v(x+h, y)-v(x, y)}{h}
$$

If f is differentiable at w, taking the limit as $h \rightarrow 0$ gives

$$
f^{\prime}(x+i y)=\partial_{x} u(x, y)+i \partial_{x} v(x, y)
$$

Consider $z=w+i h$, where h is a real number. Then

$$
\frac{f(z)-f(w)}{z-w}=\frac{u(x, y+h)-u(x, y)}{i h}+i \frac{v(x, y+h)-v(x, y)}{i h}
$$

If $f^{\prime}(x+i y)$ exists, then taking the limit as $h \rightarrow 0$ gives

$$
f^{\prime}(x+i y)=-i \partial_{y} u(x, y)+\partial_{y} v(x, y)
$$

Thus: $\partial_{x} u(x, y)+i \partial_{x} v(x, y)=-i \partial_{y} u(x, y)+\partial_{y} v(x, y)$, so
Cauchy-Riemann equations: if $f=u+i v$ is analytic, then

$$
\partial_{x} u(x, y)=\partial_{y} v(x, y), \quad \partial_{y} u(x, y)=-\partial_{x} v(x, y) .
$$

Theorem: suppose $f(x+i y)=u(x, y)+i v(x, y)$
If u and v are differentiable on E, then f is analytic on E if

$$
\partial_{x} u(x, y)=\partial_{y} v(x, y), \quad \partial_{y} u(x, y)=-\partial_{x} v(x, y) .
$$

Example:

$$
e^{x+i y}=e^{x}(\cos y+i \sin y)
$$

$$
u(x, y)=e^{x} \cos y, \quad v(x, y)=e^{x} \sin y
$$

$$
\begin{gathered}
\partial_{x} u(x, y)=e^{x} \cos y=\partial_{y} v(x, y) \\
\partial_{y} u(x, y)=-e^{x} \sin y=\partial_{x} v(x, y)
\end{gathered}
$$

The derivative of $\arg (z)$

Lemma

For any branch of $\arg (x, y)=\arg (x+i y)$, on $\mathbb{C} \backslash\{$ cut-line $\}$

$$
\partial_{x} \arg (x, y)=\frac{-y}{x^{2}+y^{2}}, \quad \partial_{y} \arg (x, y)=\frac{x}{x^{2}+y^{2}}
$$

Proof. It suffices to prove it near each point for some branch, since different branches differ by a constant $2 \pi k$.

- For $x>0$ choose $\arg (x, y)=\arctan (y / x)$.
- For $x<0$ choose $\arg (x, y)=\arctan (y / x)+\pi$.
- For $y>0$ choose $\arg (x, y)=\operatorname{arccot}(x / y)$.
- For $y<0$ choose $\arg (x, y)=\operatorname{arccot}(x / y)+\pi$.

Derivative of $\log z$

Principal branch: $\log (z)=\log |z|+i \arg _{(-\pi, \pi]}(z)$

$$
u(x, y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right), \quad v(x, y)=\arg _{(-\pi, \pi]}(x, y)
$$

C-R holds, partial derivatives are continuous on $\mathbb{C} \backslash(-\infty, 0]$, so

$$
\begin{gathered}
(\log z)^{\prime}=\partial_{x} u+i \partial_{x} v=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}=\frac{1}{x+i y} \\
(\log z)^{\prime}=\frac{1}{z}
\end{gathered}
$$

This rule holds for every branch of $\log z$, off its cut-line.

Derivative of $z^{\frac{1}{2}}$

Principal branch: $z^{\frac{1}{2}}=e^{\frac{1}{2} \log z}$ (principal branch of log)
By chain rule:

$$
\left(z^{\frac{1}{2}}\right)^{\prime}=e^{\frac{1}{2} \log z} \cdot \frac{1}{2}(\log z)^{\prime}=\frac{1}{2} z^{\frac{1}{2}} z^{-1}
$$

Writing $z^{-1}=e^{-\log z}$, we see $z^{\frac{1}{2}} z^{-1}=e^{-\frac{1}{2} \log z}$,

$$
\left(z^{\frac{1}{2}}\right)^{\prime}=\frac{1}{2} z^{-\frac{1}{2}}
$$

where $z^{-\frac{1}{2}}$ is also the principal branch.

