Lecture 11: Contour integrals

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Curves in the complex plane

Definition

A curve is a continuous map $\gamma(t):[a, b] \rightarrow \mathbb{C}$, some $[a, b] \subset \mathbb{R}$.
Example: A straight line curve from z to w :

$$
\gamma(t)=(1-t) z+t w, \quad t \in[0,1]
$$

A curve that moves counterclockwise around the unit circle in \mathbb{C} :

$$
\gamma(t)=e^{i t}, \quad t \in[0,2 \pi]
$$

A curve that moves counterclockwise around the unit square:

$$
\gamma(t)= \begin{cases}t, & 0 \leq t \leq 1 \\ 1+i(t-1) & 1 \leq t \leq 2 \\ (3-t)+i & 2 \leq t \leq 3 \\ (4-t) i & 3 \leq t \leq 4\end{cases}
$$

Piecewise smooth curves

- A curve is smooth if $\gamma^{\prime}(t)$ is continuous.

Remark: $\gamma^{\prime}(t)$ is the usual derivative of $\gamma(t)$ as a function

$$
\gamma^{\prime}(t)=\frac{d \gamma(t)}{d t}=\lim _{h \rightarrow 0} \frac{\gamma(t+h)-\gamma(t)}{h}
$$

with one-sided derivatives at endpoints $t=a$ and $t=b$.

- A curve is piecewise smooth if one can partition

$$
a=a_{0}<a_{1}<\cdots<a_{n}=b
$$

such that γ is smooth on each subinterval $\left[a_{k}, a_{k+1}\right]$.

Chain rule for complex curves

If $f(z)$ is analytic on E, where E contains the image of γ, then

$$
\frac{d f(\gamma(t))}{d t}=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)
$$

Proof. Same as proof of standard chain rule: take limit of

$$
\frac{f(\gamma(t+h))-f(\gamma(t))}{h}=\frac{f(\gamma(t+h))-f(\gamma(t))}{\gamma(t+h)-\gamma(t)} \frac{\gamma(t+h)-\gamma(t)}{h}
$$

Corollary: Fundamental Theorem of Calculus

If $\gamma(t)$ is a piecewise smooth curve, and f is analytic on a set \boldsymbol{E} containing the image of γ, and $f^{\prime}(z)$ is continuous on E, then

$$
\int_{a}^{b} f^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t=f(\gamma(b))-f(\gamma(a))
$$

Integrals of complex valued functions over $[a, b]$

If $f(t)=u(t)+i v(t)$ continuous on $[a, b]$, can identify

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

Agrees with writing integral as limit of Riemann sums.

Similar properties hold as for real integrals:

$$
\int_{a}^{b} \alpha f(t) d t=\alpha \int_{a}^{b} f(t) d t, \quad \alpha \in \mathbb{C}
$$

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

Contour integral

Definition

If $f(z)$ is a continuous function on $E \subset \mathbb{C}$, and $\gamma(t):[a, b] \rightarrow E$ is a smooth (or piecewise smooth) curve, we define

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Intuition: think of plugging in $z=\gamma(t), d z=\frac{d \gamma(t)}{d t} d t$.
By above corollary:

$$
\int_{\gamma} f^{\prime}(z) d z=f(\gamma(b))-f(\gamma(a))
$$

