Lecture 13: Cauchy's Theorem

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

More on contour integrals

Useful notation:

• If $z_0, z_1 \in \mathbb{C}$, $[z_0, z_1] = \text{straight line path from } z_0 \text{ to } z_1$

$$[z_0, z_1] = \{(1-t)z_0 + tz_1 : t \in [0,1]\}$$

We will write

$$\int_{[z_0,z_1]} f(z) \, dz = \int_{z_0}^{z_1} f(z) \, dz$$

 $\bullet~$ For γ a path, $-\gamma~$ denotes the same path in the other direction

$$-\gamma(t) = \big\{\gamma(-t) : t \in [-b, -a]\big\}$$

Then
$$\int_{-\infty}^{\infty} f(z) dz = -\int_{\infty}^{\infty} f(z) dz$$
, and $-[z_0, z_1] = [z_1, z_0]$.

Contour integrals over the boundary of a domain

We integrate over boundaries in counter-clockwise direction:

• If Δ = triangle connecting $\{z_0, z_1, z_2\}$ counter-clockwise

$$\int_{\partial \Delta} f(z) \, dz \, = \int_{z_0}^{z_1} f(z) \, dz \, + \int_{z_1}^{z_2} f(z) \, dz \, + \int_{z_2}^{z_0} f(z) \, dz$$

Equivalently: $\partial \Delta$ is the contour $[z_0, z_1] \cup [z_1, z_2] \cup [z_2, z_0]$

• If $D_r(w) = \text{disc of radius } r \text{ centered at } w$,

$$\int_{\partial D_r(w)} f(z) dz = \int_0^{2\pi} f(w + re^{it}) i re^{it} dt$$

Equivalently: $\partial D_r(w)$ is the contour $\{w + re^{it} : t \in [0, 2\pi]\}$

Cauchy's Theorem

Cauchy's Theorem for a triangle Δ

If f(z) is a smooth analytic function on an open set $E \supset \Delta$, then

$$\int_{\partial \Lambda} f(z) dz = 0$$

Relate to real line integrals: if f(x + iy) = u(x, y) + iv(x, y),

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(u(x, y) + iv(x, y) \right) \left(dx + idy \right)$$
$$= \int_{\gamma} \left(u dx - v dy \right) + i \int_{\gamma} \left(v dx + u dy \right)$$

Green's Theorem for a triangle Δ

If u, v continuously differentiable on an open set $E \supset \Delta$, then

$$\int_{\partial \Delta} v \, dx + u \, dy = \int_{\Delta} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx \, dy$$

Replacing (u, v) with (-v, u) gives:

$$\int_{\partial \Delta} u \, dx - v \, dy \, = \, - \int_{\Delta} \left(\frac{\partial v}{\partial x} \, + \, \frac{\partial u}{\partial y} \right) dx \, dy$$

Cauchy's Theorem follows from Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \qquad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

Arclength of a path

For a smooth curve in \mathbb{R}^2 given by $\{(x(t), y(t)) : t \in [a, b]\}$

Distance traveled =
$$\int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt$$

If
$$\gamma(t) = x(t) + iy(t)$$
, then $|\gamma'(t)| = \sqrt{x'(t)^2 + y'(t)^2}$,

Distance traveled by
$$\gamma$$
: $\ell(\gamma) = \int_a^b |\gamma'(t)| dt$

Semicircle: $\gamma(t) = e^{it}$, $t \in [0, \pi]$, $\ell(\gamma) = \pi$.

Recall the inequality: $\left| \int_a^b g(t) dt \right| \leq \int_a^b |g(t)| dt$, we get

$$\left| \int_{\gamma} f(z) \, dz \, \right| \, \leq \, \int_{a}^{b} |f(\gamma(t))| \, |\gamma'(t)| \, dt$$

Corollary

If $|f(z)| \leq M$ for all z in the image of γ , then

$$\left| \int_{\gamma} f(z) \, dz \, \right| \, \leq \, M \cdot \ell(\gamma)$$

Typical application:

$$\left| \int_{\partial D_r(z_0)} f(z) \, dz \right| \leq 2\pi r \cdot \max |f(z)|.$$