Lecture 15: Cauchy’s Integral Formula

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Review: Cauchy's Theorem for a triangle \triangle

If $f(z)$ is analytic on a convex open set E, then for any $\Delta \subset E$,

$$
\int_{\partial \Delta} f(z) d z=0
$$

Anti-derivatives and Cauchy's Theorem on convex sets

Let $E \subset \mathbb{C}$ be open, convex, and $f(z)$ continuous on E. If

$$
\int_{\partial \Delta} f(z) d z=0 \quad \text { for all } \Delta \subset E
$$

then $F(z)=\int_{z_{0}}^{z} f(w) d w$ is analytic on E, and $F^{\prime}(z)=f(z)$.
Therefore, $\int_{\gamma} f(z) d z=0$ for all closed paths $\gamma \subset E$.

Generalization: assume E open, convex, and $z_{0} \in E$.

Suppose $g(z)$ is continuous on E, and analytic on $E \backslash\left\{z_{0}\right\}$.
Then $\int_{\partial \Delta} g(z) d z=0$ for all $\Delta \subset E$, so $g(z)=G^{\prime}(z)$,
and $\int_{\gamma} g(z) d z=0 \quad$ for all closed paths $\gamma \subset E$.

Example of interest. Assume $f(z)$ analytic on E, and $z_{0} \in \mathbb{C}$.

$$
g(z)=\left\{\begin{array}{cl}
\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}, & z \in E \backslash\left\{z_{0}\right\} \\
f^{\prime}\left(z_{0}\right), & z=z_{0}
\end{array}\right.
$$

Then $\int_{\gamma} g(w) d w=0$ for every closed path γ in E.

If E is convex open, γ a closed path in E that does not touch z_{0},

$$
\int_{\gamma} \frac{f(w)-f\left(z_{0}\right)}{w-z_{0}} d w=0
$$

Cauchy integral formula

$$
\int_{\gamma} \frac{f(w)}{w-z_{0}} d w=f\left(z_{0}\right) \cdot\left(\int_{\gamma} \frac{1}{w-z_{0}} d w\right)
$$

Index Theorem

If γ is a closed path in \mathbb{C} that does not touch z_{0}, then

$$
\int_{\gamma} \frac{1}{w-z_{0}} d w=2 \pi i k
$$

for some integer k. We call k the index of z_{0} with respect to γ,

$$
\operatorname{ind}_{\gamma}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{w-z_{0}} d w
$$

$$
\int_{\gamma} \frac{1}{w-z_{0}} d w=\int_{a}^{b} \frac{\gamma^{\prime}(t)}{\gamma(t)-z_{0}} d t=\int_{a}^{b} \frac{\mu^{\prime}(t)}{\mu(t)} d t
$$

where $\mu(t)=\gamma(t)-z_{0}$, so $\mu(t)$ is a closed path in $\mathbb{C} \backslash\{0\}$.
Intuition: if μ a path in $\mathbb{C} \backslash(-\infty, 0$ (maybe not closed)

$$
\int_{a}^{b} \frac{\mu^{\prime}(t)}{\mu(t)} d t=\int_{a}^{b} \frac{d}{d t} \log (\mu(t)) d t=\log (\mu(b))-\log (\mu(a))
$$

Imaginary part is $\arg (\mu(b))-\arg (\mu(a))$.

- If $\mu(t)$ wraps around 0 , i.e. $\gamma(t)$ wraps around z_{0}, integral requires different branches; differences in $\arg (\mu(t))$ add up.

To handle paths μ that wrap around $\{0\}$:

- Find points $a=a_{0}<a_{1}<\cdots<a_{n}=b$ so that image of $\left[a_{j}, a_{j+1}\right]$ by μ lies in some half-space.
- We can then write $\int_{a_{j}}^{a_{j+1}} \frac{\mu^{\prime}(t)}{\mu(t)} d t=\log \left(\mu\left(a_{j+1}\right)\right)-\log \left(\mu\left(a_{j}\right)\right)$ for some branch of $\log (z)=\log |z|+i \arg (z)$.
- Add up from $j=1$ to n, the imaginary part gives

$$
\sum_{j=1}^{n} \arg \left(\mu\left(a_{j+1}\right)\right)-\arg \left(\mu\left(a_{j}\right)\right)=\text { total change in } \arg (\mu(t))
$$

- The real part gives

$$
\sum_{j=1}^{n} \log \left|\mu\left(a_{j+1}\right)\right|-\log \left|\mu\left(a_{j}\right)\right|=\log |\mu(b)|-\log |\mu(a)|=0
$$

