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From last lecture...

If v is a closed path in C, and z ¢ {v}, then
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for some integer k. We call k the index of z with respect to ~,
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. ind,(z) is an integer valued function defined on C\{~}.




Alternate Proof of Theorem

Write (1) = z+ pu(t) where p(t) = r(t)e®
e r(t) >0, 6(t) smooth, real valued functions on [a, b].

e r(b)=r(a), P = ea so (b)-6(a)=_2rk.
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ind,(z) = o



Consequence

If E is convex open, ~ a closed path in E such that z ¢ {~}, and
f(z) an analytic function on E,
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Cauchy integral formula: f(z) analytic on convex open set E

Let v be a closed path in E that does not touch z. Then
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Important fact

Let v trace the unit circle: y(t) = e', t € [0, 2x].

1, |z|<1,

Then: ind,(z) = {O 2] > 1

Cauchy integral formula for the circle

Assume f(z) analytic on an open set E containing {z: |z| < 1}.
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Theorem: for a closed path ~

The function ind,(z) is continuous on C\ {v}.

Proof. Suppose z; is distance r from {~}, and |z — zy| < r/2.
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So: |ind,(2) —ind,(z0)| =
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This implies:  lim_,, |ind,(z) — ind,(z)| = 0.



