Lecture 16: The Index Function

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

From last lecture...

Theorem

If γ is a closed path in \mathbb{C} , and $z \notin \{\gamma\}$, then

$$\int_{\gamma} \frac{1}{w - z} \, dw \, = \, 2\pi i \, k$$

for some integer k. We call k the index of z with respect to γ ,

$$\operatorname{ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{w - z} \, dw$$

ind $_{\gamma}(z)$ is an integer valued function defined on $\mathbb{C}\setminus\{\gamma\}$.

Alternate Proof of Theorem

Write
$$\gamma(t) = z + \mu(t)$$
 where $\mu(t) = r(t)e^{i\theta(t)}$

- r(t) > 0, $\theta(t)$ smooth, real valued functions on [a, b].
- r(b) = r(a), $e^{i\theta(b)} = e^{i\theta(a)}$, so $\theta(b) \theta(a) = 2\pi k$.

Then:
$$\frac{\mu'(t)}{\mu(t)} = \frac{r'(t)e^{i\theta(t)} + r(t)e^{i\theta(t)} i\theta'(t)}{r(t)e^{i\theta(t)}} = \frac{r'(t)}{r(t)} + i\theta'(t)$$

$$\int_{a}^{b} \frac{\mu'(t)}{\mu(t)} dt = \log(r(t)) \Big|_{a}^{b} + i\theta(t) \Big|_{a}^{b} = i 2\pi k$$

$$\operatorname{ind}_{\gamma}(z) = \frac{\theta(b) - \theta(a)}{2\pi}$$

Consequence

If *E* is convex open, γ a closed path in *E* such that $z \notin \{\gamma\}$, and f(z) an analytic function on *E*,

$$\int_{\gamma} \frac{f(w) - f(z_0)}{w - z_0} \ dw = 0$$

$$\int_{\gamma} \frac{f(w)}{w - z_0} dw = f(z_0) \cdot \left(\int_{\gamma} \frac{1}{w - z_0} dw \right)$$

Cauchy integral formula: f(z) analytic on convex open set E

Let γ be a closed path in E that does not touch z. Then

$$\int_{\gamma} \frac{f(w)}{w-z} \ dw = 2\pi i f(z) \cdot \operatorname{ind}_{\gamma}(z).$$

Example

Important fact

Let γ trace the unit circle: $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$.

Then:
$$\operatorname{ind}_{\gamma}(z) = \begin{cases} 1, & |z| < 1, \\ 0, & |z| > 1. \end{cases}$$

Cauchy integral formula for the circle

Assume f(z) analytic on an open set E containing $\{z : |z| \le 1\}$.

Then, for
$$|z| < 1$$
: $f(z) = \frac{1}{2\pi i} \int_{|w|=1} \frac{f(w)}{w-z} dw$

Theorem: for a closed path γ

The function $\operatorname{ind}_{\gamma}(z)$ is continuous on $\mathbb{C} \setminus \{\gamma\}$.

Proof. Suppose z_0 is distance r from $\{\gamma\}$, and $|z - z_0| < r/2$.

$$w \in \{\gamma\}: \ \left| \frac{1}{w-z} - \frac{1}{w-z_0} \right| = \left| \frac{z-z_0}{(w-z_0)(w-z)} \right| \le \frac{2|z-z_0|}{r^2}$$

So:
$$\left|\operatorname{ind}_{\gamma}(z) - \operatorname{ind}_{\gamma}(z_{0})\right| = \left|\frac{1}{2\pi i} \int_{\gamma} \frac{1}{w - z} - \frac{1}{w - z_{0}} dw\right|$$

$$\leq \frac{1}{2\pi} \ell(\gamma) \frac{2|z - z_{0}|}{r^{2}} = \frac{\ell(\gamma)}{\pi r^{2}} |z - z_{0}|$$

This implies: $\lim_{z\to z_0} \left| \operatorname{ind}_{\gamma}(z) - \operatorname{ind}_{\gamma}(z_0) \right| = 0.$