Lecture 17: Properties of the Index Function

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

From Lecture 16

Theorem

If γ is a closed path in $\mathbb C$ that does not touch z, then

$$\operatorname{ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{w-z} \, dw$$

is an integer k, called the index of z with respect to γ .

Theorem: for a closed path γ

The function $\operatorname{ind}_{\gamma}(z)$ is continuous on $\mathbb{C} \setminus \{\gamma\}$.

Theorem: for a closed path γ

Suppose *z*, *z*₀ are two points in $\mathbb{C} \setminus \{\gamma\}$, such that there is a continuous path from *z*₀ to *z* that does not cross γ . Then $\operatorname{ind}_{\gamma}(z) = \operatorname{ind}_{\gamma}(z_0)$

Proof. Let $\mu(t)$ be a continuous path, $\mu(a) = z_0$, $\mu(b) = z$.

- By composition rule, $f(t) = ind_{\gamma}(\mu(t))$ is continuous map.
- $f(t): [a, b] \to \mathbb{R}$ takes on only integer values.
- f(t) must be constant on [a, b], since it cannot jump:

Intermediate value theorem: If $f(b) \neq f(a)$, then f(t) takes on all real values in between f(b) and f(a), a contradiction.

Definition: Suppose $E \subset \mathbb{C}$ is an open set, and $z, z_0 \in E$.

We say z and z_0 are in the same *component* of E if there is a continuous path from z_0 to z that is contained in E.

We write $z \sim z_0$ when they are in the same component. Then:

- If $z \sim z_0$ and $z' \sim z_0$ then $z \sim z'$.
- For all $z \in E$, we have $z \sim z$.
- If $z \sim z'$ then $z' \sim z$.

The components of E are open since E is open:

If $D_r(z) \subset E$, then $z' \sim z$ for each point $z' \in D_r(z)$.

Theorem

The function $\operatorname{ind}_{\gamma}(z)$ is constant on each component of $\mathbb{C} \setminus \{\gamma\}$.

Examples

• If
$$\gamma(t) = e^{it}$$
, $t \in [0, 2\pi]$, the components are

$$\mathbb{C} \setminus \{\gamma\} = \{z : |z| < 1\} \cup \{z : |z| > 1\}$$

$$\operatorname{\mathsf{ind}}_\gamma(z) \,=\, egin{cases} 1\,, & |z| < 1\,, \ 0\,, & |z| > 1\,. \end{cases}$$

• If
$$\gamma(t) = \begin{cases} e^{it}, & t \in [0, 2\pi], \\ 2e^{it} - 1, & t \in [2\pi, 4\pi], \end{cases}$$
 the components are $\{z : |z| < 1\} \cup \{z : |z| > 1, |z + 1| < 2\} \cup \{z : |z + 1| > 2\}$

$${
m ind}_\gamma(z) \,=\, egin{cases} 2\,, & |z|<1\,, \ 1\,, & |z|>1\, ext{ and } |z+1|<2\,, \ 0\,, & |z+1|>2\,. \end{cases}$$

- There is a unique *unbounded component* of $\mathbb{C}\setminus\{\gamma\}$, which consists of all points in $\mathbb{C}\setminus\{\gamma\}$ that can be "connected to ∞ " without crossing γ .
- If γ is a closed path with image contained in $\{z : |z| \le R\}$, then the unbounded component contains $\{z : |z| > R\}$.
- ind_γ(z) = 0 for all z in the unbounded component of C\{γ}.