Lecture 18: Uniform convergence

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Two notions of functions converging on a set $\mathcal{S}\subset\mathbb{C}$

Definition

A sequence of functions F_n converges pointwise to F on S, if for each $\epsilon > 0$ and each $w \in S$, there is N such that

$$|F_n(w) - F(w)| \le \epsilon \text{ when } n \ge N.$$

Definition

A sequence of functions F_n converges uniformly to F on S, if for each $\epsilon > 0$, there is N such that

$$|F_n(w) - F(w)| \le \epsilon$$
 for all $w \in S$, when $n \ge N$.

Key distinction:

- In pointwise convergence, N can depend on w (and ϵ).
- In uniform convergence, N depends only on ϵ , not on w.

Important example: Consider $F_n(z) = z^n$. Then:

- z^n converges pointwise to 0 on the set $\{z : |z| < 1\}$
- z^n does not converge uniformly to 0 on $\{z : |z| < 1\}$
- $\bullet \ \ \text{If} \ r<1, \ \ z^n \ \text{converges uniformly to 0 on } \{z:|z|\leq r\}$

Proof. Given
$$\epsilon$$
, there is N so that $r^N < \epsilon$, since $r < 1$

For
$$|z| \le r$$
: $|z^n - 0| = |z|^n \le r^n \le \epsilon$ if $n \ge N$

Related example: Consider $F_n(z) = \left(\frac{z}{R}\right)^n = \frac{z''}{R^n}$ Then:

- $\frac{z^n}{R^n}$ converges pointwise to 0 on the set $\{z: |z| < R\}$
- If r < R, $\frac{z^n}{R^n}$ converges uniformly to 0 on $\{z : |z| \le r\}$

Theorem

Suppose that F_n converges uniformly to F on a set E, and γ is a path contained in E. Then

$$\lim_{n\to\infty}\int_{\Omega}F_n(w)\,dw=\int_{\Omega}F(w)\,dw.$$

Proof.

$$\left| \int_{\gamma} F_n(w) \, dw - \int_{\gamma} F(w) \, dw \right| = \left| \int_{\gamma} F_n(w) - F(w) \, dw \right| \le \ell(\gamma) \cdot M$$

where $M = \max_{w \in \{\gamma\}} |F_n(w) - F(w)|$.

Uniform convergence: given ϵ there is N so $M < \frac{\epsilon}{\ell(\gamma)}$ if $n \geq N$,

$$\left| \int_{\gamma} F_n(w) \, dw - \int_{\gamma} F(w) \, dw \right| \leq \epsilon \text{ for } n \geq N.$$

Theorem

Suppose that F_n converges uniformly to F on a set E, and F_n is continuous on E for every n. Then F is continuous.

Proof. This is a classic $\frac{\epsilon}{3}$ proof. Given ϵ , and $z \in E$:

- Choose n so that $|F_n(w) F(w)| \le \frac{\epsilon}{3}$ for all $w \in E$
- Now that *n* is fixed, choose δ so $|F_n(w) F_n(z)| \leq \frac{\epsilon}{3}$

$$|F(w) - F(z)| \le |F(w) - F_n(w)| + |F_n(w) - F_n(z)| + |F_n(z) - F(z)|$$

 $\le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$

Corollary

Suppose that F_n converges uniformly to F on an open convex set E, and assume that F_n is analytic on E for every n.

Then F is continuous, and

$$\int_{\partial\Delta}F(z)\,dz\,=\,0$$

for all triangles $\Delta \subset E$.