Lecture 18: Uniform convergence #### Hart Smith Department of Mathematics University of Washington, Seattle Math 427, Autumn 2019 ## Two notions of functions converging on a set $\mathcal{S}\subset\mathbb{C}$ ### Definition A sequence of functions F_n converges pointwise to F on S, if for each $\epsilon > 0$ and each $w \in S$, there is N such that $$|F_n(w) - F(w)| \le \epsilon \text{ when } n \ge N.$$ ### Definition A sequence of functions F_n converges uniformly to F on S, if for each $\epsilon > 0$, there is N such that $$|F_n(w) - F(w)| \le \epsilon$$ for all $w \in S$, when $n \ge N$. ## Key distinction: - In pointwise convergence, N can depend on w (and ϵ). - In uniform convergence, N depends only on ϵ , not on w. ## **Important example:** Consider $F_n(z) = z^n$. Then: - z^n converges pointwise to 0 on the set $\{z : |z| < 1\}$ - z^n does not converge uniformly to 0 on $\{z : |z| < 1\}$ - $\bullet \ \ \text{If} \ r<1, \ \ z^n \ \text{converges uniformly to 0 on } \{z:|z|\leq r\}$ **Proof.** Given $$\epsilon$$, there is N so that $r^N < \epsilon$, since $r < 1$ For $$|z| \le r$$: $|z^n - 0| = |z|^n \le r^n \le \epsilon$ if $n \ge N$ # **Related example:** Consider $F_n(z) = \left(\frac{z}{R}\right)^n = \frac{z''}{R^n}$ Then: - $\frac{z^n}{R^n}$ converges pointwise to 0 on the set $\{z: |z| < R\}$ - If r < R, $\frac{z^n}{R^n}$ converges uniformly to 0 on $\{z : |z| \le r\}$ #### **Theorem** Suppose that F_n converges uniformly to F on a set E, and γ is a path contained in E. Then $$\lim_{n\to\infty}\int_{\Omega}F_n(w)\,dw=\int_{\Omega}F(w)\,dw.$$ ## Proof. $$\left| \int_{\gamma} F_n(w) \, dw - \int_{\gamma} F(w) \, dw \right| = \left| \int_{\gamma} F_n(w) - F(w) \, dw \right| \le \ell(\gamma) \cdot M$$ where $M = \max_{w \in \{\gamma\}} |F_n(w) - F(w)|$. Uniform convergence: given ϵ there is N so $M < \frac{\epsilon}{\ell(\gamma)}$ if $n \geq N$, $$\left| \int_{\gamma} F_n(w) \, dw - \int_{\gamma} F(w) \, dw \right| \leq \epsilon \text{ for } n \geq N.$$ #### Theorem Suppose that F_n converges uniformly to F on a set E, and F_n is continuous on E for every n. Then F is continuous. **Proof.** This is a classic $\frac{\epsilon}{3}$ proof. Given ϵ , and $z \in E$: - Choose n so that $|F_n(w) F(w)| \le \frac{\epsilon}{3}$ for all $w \in E$ - Now that *n* is fixed, choose δ so $|F_n(w) F_n(z)| \leq \frac{\epsilon}{3}$ $$|F(w) - F(z)| \le |F(w) - F_n(w)| + |F_n(w) - F_n(z)| + |F_n(z) - F(z)|$$ $\le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$ ## Corollary Suppose that F_n converges uniformly to F on an open convex set E, and assume that F_n is analytic on E for every n. Then F is continuous, and $$\int_{\partial\Delta}F(z)\,dz\,=\,0$$ for all triangles $\Delta \subset E$.