Lecture 18: Uniform convergence

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Two notions of functions converging on a set $S \subset \mathbb{C}$

Definition

A sequence of functions F_{n} converges pointwise to F on S, if for each $\epsilon>0$ and each $w \in S$, there is N such that

$$
\left|F_{n}(w)-F(w)\right| \leq \epsilon \text { when } n \geq N
$$

Definition

A sequence of functions F_{n} converges uniformly to F on S, if for each $\epsilon>0$, there is N such that

$$
\left|F_{n}(w)-F(w)\right| \leq \epsilon \text { for all } w \in S, \text { when } n \geq N .
$$

Key distinction:

- In pointwise convergence, N can depend on w (and ϵ).
- In uniform convergence, N depends only on ϵ, not on w.

Important example: Consider $F_{n}(z)=z^{n}$. Then:

- z^{n} converges pointwise to 0 on the set $\{z:|z|<1\}$
- z^{n} does not converge uniformly to 0 on $\{z:|z|<1\}$
- If $r<1, z^{n}$ converges uniformly to 0 on $\{z:|z| \leq r\}$ Proof. Given ϵ, there is N so that $r^{N}<\epsilon$, since $r<1$

$$
\text { For }|z| \leq r: \quad\left|z^{n}-0\right|=|z|^{n} \leq r^{n} \leq \epsilon \text { if } n \geq N
$$

Related example: Consider $F_{n}(z)=\left(\frac{z}{R}\right)^{n}=\frac{z^{n}}{R^{n}}$ Then:

- $\frac{z^{n}}{R^{n}}$ converges pointwise to 0 on the set $\{z:|z|<R\}$
- If $r<R, \frac{z^{n}}{R^{n}}$ converges uniformly to 0 on $\{z:|z| \leq r\}$

Theorem

Suppose that F_{n} converges uniformly to F on a set E, and γ is a path contained in E. Then

$$
\lim _{n \rightarrow \infty} \int_{\gamma} F_{n}(w) d w=\int_{\gamma} F(w) d w
$$

Proof.

$\left|\int_{\gamma} F_{n}(w) d w-\int_{\gamma} F(w) d w\right|=\left|\int_{\gamma} F_{n}(w)-F(w) d w\right| \leq \ell(\gamma) \cdot M$
where $M=\max _{w \in\{\gamma\}}\left|F_{n}(w)-F(w)\right|$.
Uniform convergence: given ϵ there is N so $M<\frac{\epsilon}{\ell(\gamma)}$ if $n \geq N$,

$$
\left|\int_{\gamma} F_{n}(w) d w-\int_{\gamma} F(w) d w\right| \leq \epsilon \text { for } n \geq N
$$

Suppose that F_{n} converges uniformly to F on a set E, and F_{n} is continuous on E for every n. Then F is continuous.

Proof. This is a classic $\frac{\epsilon}{3}$ proof. Given ϵ, and $z \in E$:

- Choose n so that $\left|F_{n}(w)-F(w)\right| \leq \frac{\epsilon}{3}$ for all $w \in E$
- Now that n is fixed, choose δ so $\left|F_{n}(w)-F_{n}(z)\right| \leq \frac{\epsilon}{3}$

$$
\begin{aligned}
|F(w)-F(z)| & \leq\left|F(w)-F_{n}(w)\right|+\left|F_{n}(w)-F_{n}(z)\right|+\left|F_{n}(z)-F(z)\right| \\
& \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

Corollary

Suppose that F_{n} converges uniformly to F on an open convex set E, and assume that F_{n} is analytic on E for every n.

Then F is continuous, and

$$
\int_{\partial \Delta} F(z) d z=0
$$

for all triangles $\Delta \subset E$.

