Lecture 2: Convergence of Series

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Motivation: functions given by power series

We will define:

$$
e^{z}=1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots \quad \text { for all } z
$$

We will prove:

$$
\frac{1}{\sqrt{1-z}}=1+\frac{1}{2} z+\frac{1}{2} \frac{3}{2} \frac{1}{2!} z^{2}+\frac{1}{2} \frac{3}{2} \frac{5}{2} \frac{1}{3!} z^{3}+\cdots \quad \text { for }|z|<1
$$

To start, need to study when infinite sums converge...

Limits of sequences

Definition

If $\left\{z_{n}\right\}=\left(z_{1}, z_{2}, \ldots\right)$ is a sequence of complex numbers, we say

$$
\lim _{n \rightarrow \infty} z_{n}=z \quad \text { if } \quad \lim _{n \rightarrow \infty}\left|z_{n}-z\right|=0
$$

This is equivalent to the conditions

$$
\lim _{n \rightarrow \infty} \operatorname{Re}\left(z_{n}\right)=\operatorname{Re}(z) \quad \text { and } \quad \lim _{n \rightarrow \infty} \operatorname{Im}\left(z_{n}\right)=\operatorname{Im}(z)
$$

Example: Consider a complex number z, and let $z_{n}=z^{n}$. Then

$$
\lim _{n \rightarrow \infty} z^{n}=0 \quad \text { if } \quad|z|<1
$$

Comparison test: If $b_{n} \geq 0$ and $\lim _{n \rightarrow \infty} b_{n}=0$, then

$$
\left|z_{n}-z\right| \leq b_{n} \quad \text { implies } \quad \lim _{n \rightarrow \infty} z_{n}=z
$$

Theorem

Suppose that $\lim _{n \rightarrow \infty} z_{n}=z$ and $\lim _{n \rightarrow \infty} w_{n}=w$. Then

$$
\lim _{n \rightarrow \infty}\left(z_{n}+w_{n}\right)=z+w, \quad \lim _{n \rightarrow \infty} z_{n} w_{n}=z w
$$

- First result follows from

$$
\left|\left(z_{n}+w_{n}\right)-(z+w)\right| \leq\left|z_{n}-z\right|+\left|w_{n}-w\right|
$$

- For second, we use

$$
\left|z_{n} w_{n}-z w\right| \leq\left|z_{n}-z\right|\left|w_{n}\right|+|z|\left|w_{n}-w\right|
$$

To show first term $\rightarrow 0$, use $\left|w_{n}\right| \leq|w|+1$ for large n.

Convergence of series

If $\left(z_{0}, z_{1}, z_{2}, \ldots\right)$ are complex numbers, we say

$$
\sum_{k=0}^{\infty} z_{k}=z \quad \text { if } \quad \lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} z_{k}\right)=z
$$

If $\sum_{k=0}^{\infty} z_{k}=z$ for some $z \in \mathbb{C}$ we say that $\sum_{k=0}^{\infty} z_{k}$ converges.

Necessary (but not sufficient) condition for convergence:

$$
\lim _{k \rightarrow \infty} z_{k}=0
$$

Important example: $z_{k}=z^{k}$

$$
\sum_{k=0}^{\infty} z^{k}=(1-z)^{-1} \quad \text { if } \quad|z|<1
$$

Note: $\left|z^{k}\right|=|z|^{k} \rightarrow 0$ only when $|z|<1$.

Above is example of an absolutely convergent series:

Definition

A series is absolutely convergent if $\sum_{k=1}^{\infty}\left|z_{k}\right|$ converges.

Extremely important fact

An absolutely convergent series is convergent.

Comparison test

Suppose $M_{k} \geq 0$ are real numbers, and $\sum_{k=0}^{\infty} M_{k}$ converges.
If $\left|z_{k}\right| \leq M_{k}$ for every k, then $\sum_{k=0}^{\infty} z_{k}$ converges absolutely.

Ratio test

If $\lim _{k \rightarrow \infty} \frac{\left|z_{k+1}\right|}{\left|z_{k}\right|}<1$, then $\sum_{k=0}^{\infty} z_{k}$ converges absolutely.
Proof. Choose r such that $\lim _{k \rightarrow \infty} \frac{\left|z_{k+1}\right|}{\left|z_{k}\right|}<r<1$.
Then $\left|z_{k}\right|<C r^{k}$ for some C, and $\sum_{k=0}^{\infty} C r^{k}$ converges.

Examples: let z be a complex number

$$
\sum_{k=0}^{\infty} \frac{z^{k}}{k!}=1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots
$$

is convergent for all complex numbers z.

$$
\sum_{k=0}^{\infty} \frac{(2 k)!z^{k}}{2^{2 k}(k!)^{2}}=1+\frac{1}{2} z+\frac{1}{2} \frac{3}{2} \frac{1}{2!} z^{2}+\frac{1}{2} \frac{3}{2} \frac{5}{2} \frac{1}{3!} z^{3}+\cdots
$$

is convergent if $|z|<1$, and not convergent if $|z|>1$.

