Lecture 2: Convergence of Series

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Motivation: functions given by power series

We will define:

$$e^z = 1 + z + \frac{1}{2!}z^2 + \frac{1}{3!}z^3 + \cdots$$
 for all z

We will prove:

$$\frac{1}{\sqrt{1-z}} = 1 + \frac{1}{2}z + \frac{1}{2}\frac{3}{2}\frac{1}{2!}z^2 + \frac{1}{2}\frac{3}{2}\frac{5}{2}\frac{1}{3!}z^3 + \cdots \quad \text{for } |z| < 1$$

To start, need to study when infinite sums converge...

Limits of sequences

Definition

If $\{z_n\} = (z_1, z_2, ...)$ is a sequence of complex numbers, we say

$$\lim_{n\to\infty} z_n = z \qquad \text{ if } \qquad \lim_{n\to\infty} |z_n-z| = 0 \ .$$

This is equivalent to the conditions

$$\lim_{n\to\infty} \operatorname{Re}(z_n) = \operatorname{Re}(z)$$
 and $\lim_{n\to\infty} \operatorname{Im}(z_n) = \operatorname{Im}(z)$.

Example: Consider a complex number z, and let $z_n = z^n$. Then

$$\lim_{n\to\infty} z^n = 0 \quad \text{if} \quad |z| < 1.$$

Comparison test: If $b_n \ge 0$ and $\lim_{n \to \infty} b_n = 0$, then

$$|z_n-z| \leq b_n \qquad \text{implies} \qquad \lim_{n \to \infty} z_n = z \,.$$

Theorem

Suppose that $\lim_{n\to\infty} z_n = z$ and $\lim_{n\to\infty} w_n = w$. Then

$$\lim_{n\to\infty}(z_n+w_n)=z+w\,,\qquad \lim_{n\to\infty}z_nw_n=zw\,.$$

First result follows from

$$|(z_n + w_n) - (z + w)| \le |z_n - z| + |w_n - w|$$

For second, we use

$$|z_n w_n - zw| \le |z_n - z| |w_n| + |z| |w_n - w|$$

To show first term \rightarrow 0, use $|w_n| \le |w| + 1$ for large n.

Convergence of series

If $(z_0, z_1, z_2, ...)$ are complex numbers, we say

$$\sum_{k=0}^{\infty} z_k = z \quad \text{if} \quad \lim_{n \to \infty} \left(\sum_{k=0}^{n} z_k \right) = z$$

If
$$\sum_{k=0}^{\infty} z_k = z$$
 for some $z \in \mathbb{C}$ we say that $\sum_{k=0}^{\infty} z_k$ converges.

Necessary (but not sufficient) condition for convergence:

$$\lim_{k\to\infty}z_k=0$$

Important example: $z_k = z^k$

$$\sum_{k=0}^{\infty} z^k = (1-z)^{-1} \quad \text{if} \quad |z| < 1.$$

Note: $|z^k| = |z|^k \rightarrow 0$ only when |z| < 1.

Above is example of an absolutely convergent series:

Definition

A series is absolutely convergent if $\sum_{k=1}^{n} |z_k|$ converges.

Extremely important fact

An absolutely convergent series is convergent.

Comparison test

Suppose $M_k \ge 0$ are real numbers, and $\sum_{k=0}^{\infty} M_k$ converges.

If $|z_k| \leq M_k$ for every k, then $\sum_{k=0}^{\infty} z_k$ converges absolutely.

Ratio test

If $\lim_{k\to\infty}\frac{|z_{k+1}|}{|z_k|}<1$, then $\sum_{k=0}^{\infty}z_k$ converges absolutely.

Proof. Choose r such that $\lim_{k \to \infty} \frac{|z_{k+1}|}{|z_k|} < r < 1$.

Then $|z_k| < C r^k$ for some C, and $\sum_{k=0}^{\infty} C r^k$ converges.

Examples: let z be a complex number

$$\sum_{k=0}^{\infty} \frac{z^k}{k!} = 1 + z + \frac{1}{2!} z^2 + \frac{1}{3!} z^3 + \cdots$$

is convergent for all complex numbers z.

$$\sum_{k=0}^{\infty} \frac{(2k)! z^k}{2^{2k} (k!)^2} = 1 + \frac{1}{2} z + \frac{1}{2} \frac{3}{2} \frac{1}{2!} z^2 + \frac{1}{2} \frac{3}{2} \frac{5}{2} \frac{1}{3!} z^3 + \cdots$$

is convergent if |z| < 1, and not convergent if |z| > 1.