Lecture 20: Power series and analytic functions

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Theorem

If the power series $\sum_{k=0}^{\infty} a_{k} z^{k}$ has radius of convergence R, then the series converges uniformly on $\{z:|z| \leq r\}$ for $r<R$.

Proof. Let $f_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$, and $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$.

$$
\left|f(z)-f_{n}(z)\right|=\left|\sum_{k=n+1}^{\infty} a_{k} z^{k}\right| \leq \sum_{k=n+1}^{\infty}\left|a_{k}\right| r^{k} \quad \text { if }|z| \leq r
$$

Last sum goes to 0 as $n \rightarrow \infty$, since $\sum_{k=0}^{\infty}\left|a_{k}\right| r^{k}$ converges.

Corollary

If the power series $\sum_{k=0}^{\infty} a_{k} z^{k}$ has radius of convergence R, then $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is a continuous function on $\{z:|z|<R\}$.

First 7 partial sums for $\sum_{k=0}^{\infty} x^{k}=(1-x)^{-1}$

Application: Suppose $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ converges $|z|<R$, and μ is a path contained in $|z|<R$. Then

$$
\int_{\mu} f(z) d z=\sum_{k=0}^{\infty} a_{k} \int_{\mu} z^{k} d z
$$

In particular, if Δ is a triangle contained in $|z|<R$, then

$$
\int_{\partial \Delta} f(z) d z=\sum_{k=0}^{\infty} a_{k} \int_{\partial \Delta} z^{k} d z=0
$$

Conclude: $f(z)$ is a continuous function on $\{z:|z|<R\}$,

$$
\text { and } \int_{\partial \Delta} f(z) d z=0 \text { for all triangles } \Delta \subset\{z:|z|<R\} \text {. }
$$

Theorem: let R denote the radius of convergence

The function $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is analytic on $\{z:|z|<R\}$.
Proof. Consider the function $g(z)=\sum_{k=1}^{\infty} k a_{k} z^{k-1}$.
This is continuous on $E=\{z:|z|<R\}$, and $\int_{\partial \Delta} g(z) d z=0$ for all triangles $\Delta \subset E$. Since E is convex, we proved that

$$
f(z)=a_{0}+\int_{0}^{z} g(w) d w \text { is analytic on } E
$$

This also shows: $\quad\left(\sum_{k=0}^{\infty} a_{k} z^{k}\right)^{\prime}=\sum_{k=1}^{\infty} k a_{k} z^{k-1}$

Theorem: let R denote the radius of convergence
The function $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ has complex derivatives to every order on $\{z:|z|<R\}$, and $f^{(n)}(z)$ is obtained by differentiating term-by-term:

$$
f^{(n)}(z)=\sum_{k=n}^{\infty} k(k-1) \cdots(k-n+1) a_{k} z^{k-n}
$$

For every n, this series has radius of convergence R.

Important observation: $\quad a_{n}=\frac{f^{(n)}(0)}{n!}$

Example

$$
f(z)=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{z^{k}}{k}=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots
$$

is analytic on $\{z:|z|<1\}$, and

$$
f(z)=\int_{0}^{z}\left(1-w+w^{2}-w^{3}+\cdots\right) d w=\int_{0}^{z} \frac{d w}{1+w}
$$

This shows that $f(z)=\log (1+z)$ for $|z|<1$ (principal branch)

If we replace z by $z-1$, then for $|z-1|<1$ we have $\log (z)=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{(z-1)^{k}}{k}=(z-1)-\frac{(z-1)^{2}}{2}+\frac{(z-1)^{3}}{3} \cdots$

Example

$$
f(z)=\sum_{k \text { odd }}^{\infty}(-1)^{\frac{k-1}{2}} \frac{z^{k}}{k}=z-\frac{z^{3}}{3}+\frac{z^{5}}{5}-\frac{z^{7}}{7}+\cdots
$$

is analytic on $\{z:|z|<1\}$, and

$$
f(z)=\int_{0}^{z}\left(1-w^{2}+w^{4}-w^{6}+\cdots\right) d w=\int_{0}^{z} \frac{d w}{1+w^{2}}
$$

This shows that $f(x)=\arctan (x)$ for real $x \in(-1,1)$.

- The function $\arctan (x)$ is well behaved for all $x \in \mathbb{R}$, but $f(z)$ blows up as $z \rightarrow \pm i$.
- This explains why $R=1$ for the power series.

