Lecture 21: Power series expansions of analytic functions

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Recall from Lecture 18

Index function for γ the circle of radius *r*

Let
$$\gamma$$
 trace $\partial D_r(0)$: $\gamma(t) = re^{it}, t \in [0, 2\pi].$
Then: $\operatorname{ind}_{\gamma}(z) = \begin{cases} 1, & |z| < r, \\ 0, & |z| > r. \end{cases}$

Cauchy integral formula for the circle

Assume f(z) analytic on an open set *E* containing $\{z : |z| \le r\}$.

Then, for
$$|z| < r$$
 : $f(z) = \frac{1}{2\pi i} \int_{|w|=r} \frac{f(w)}{w-z} dw$

Suppose |z| < r, |w| = r. Then $\left|\frac{z}{w}\right| < 1$, so we can write

$$\frac{1}{w-z} = \frac{1}{w} \frac{1}{1-\frac{z}{w}} = \frac{1}{w} \sum_{k=0}^{\infty} \left(\frac{z}{w}\right)^{k} = \sum_{k=0}^{\infty} \frac{z^{k}}{w^{k+1}}$$

This gives, for each |z| < r,

$$f(z) = \frac{1}{2\pi i} \int_{|w|=r} \sum_{k=0}^{\infty} \frac{z^k}{w^{k+1}} f(w) \, dw$$

Claim: we can bring summation outside the integral, to get

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{|w|=r} \frac{f(w)}{w^{k+1}} \, dw \right) \, z^k = \sum_{k=0}^{\infty} a_k \, z^k$$

Proof: The series expansion: $(1 - \lambda)^{-1} = \sum_{k=0}^{\infty} \lambda^k$

converges uniformly on the set $\{|\lambda| \le c\}$, if c < 1.

It follows that, for each fixed z with |z| < r, the expansion

$$\frac{1}{w-z} = \frac{1}{w} \frac{1}{1-\frac{z}{w}} = \frac{1}{w} \sum_{k=0}^{\infty} \left(\frac{z}{w}\right)^k = \sum_{k=0}^{\infty} \frac{z^k}{w^{k+1}}$$

converges uniformly on the set $\{w : |w| = r\}$ since

$$\left|\frac{z}{w}\right|=c$$
, where $c=\frac{|z|}{r}<1$

Theorem

If f(z) is analytic on an open set containing $\overline{D_r}(0)$, then f(z) has a convergent power series expansion on $D_r(0)$,

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
, where $a_k = \frac{1}{2\pi i} \int_{|w|=r} \frac{f(w)}{w^{k+1}} dw$

Expansions about general points

If f(z) is analytic on an open set containing $\overline{D_r}(z_0)$, then f(z) has a convergent power series expansion for $z \in D_r(z_0)$,

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad a_k = \frac{1}{2\pi i} \int_{|w - z_0| = r} \frac{f(w)}{(w - z_0)^{k+1}} \, dw$$

 If f(z) is analytic on E, and z₀ ∈ E, this shows that f(z) is equal to its Taylor expansion on D_r(z₀) :

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$

for the largest *r* such that $D_r(z_0) \subset E$, and $r = \infty$ if $E = \mathbb{C}$.

Remark: The power series expansion of *f* may converge on a larger set than the largest $D_r(z_0)$ contained in *E*.

 If f(z) is analytic on E, then f(z) has complex derivatives to all orders on E; in particular f'(z) is analytic.

Proof. For each $z_0 \in E$, f(z) is a convergent power series on some $D_r(z_0)$, so has derivatives of all order on $D_r(z_0)$.

Examples

The function
$$\frac{1}{1+z^2}$$
 is analytic on $\mathbb{C} \setminus \{i, -i\}$.

- Its Taylor expansion about $z_0 = 0$ converges on $D_1(0)$.
- Its Taylor expansion about $z_0 = 10$ converges on $D_{\sqrt{101}}(10)$.

The function tan(z) is analytic on $\mathbb{C} \setminus \{k\pi, k \in \mathbb{Z}\}$.

- Its Taylor expansion about $z_0 = 0$ converges on $D_{\pi}(0)$.
- Its Taylor expansion about $z_0 = i$ converges on $D_{\sqrt{1+\pi^2}}(i)$.

Fact: The power series expansion of log *z* about z_0 has radius of convergence $R = |z_0|$, for $z_0 \neq 0$, and any branch of log *z*.

Proof. The radius of convergence for log *z* about z_0 is the same as the radius of convergence for its derivative, $(\log z)' = z^{-1}$. The function z^{-1} is analytic on $\mathbb{C} \setminus \{0\} \supset D_{|z_0|}(z_0)$.

• For any branch of log z, its power series expansion at z₀ is

$$\log(z_0) + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \, \frac{(z-z_0)^k}{z_0^k}$$

 If D_{|z₀|}(z₀) extends across the cut line, the expansion does not agree with that branch across the cut line.