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Recall from Lecture 18

Index function for ~ the circle of radius r

Let v trace 9D,(0) :  ~(t) = re', t € [0,2x].

1, |zl<r,

Then: ind,(z) = {O 2> r

Cauchy integral formula for the circle
Assume f(z) analytic on an open set E containing {z : |z| < r}.
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Suppose |z| < r, |w| =r. Then ‘W‘ < 1, so we can write
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This gives, for each |z| < r,
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Claim: we can bring summation outside the integral, to get
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Proof: The series expansion: (1 =X~ Z MK

converges uniformly on the set {|A\| < c}, if c< 1.

It follows that, for each fixed z with |z| < r, the expansion
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converges uniformly on the set {w : |w| = r} since
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If f(z) is analytic on an open set containing D,(0), then f(z) has
a convergent power series expansion on D,(0),
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f(z) = kE_O axz", where g, = 21 ey W dw

Expansions about general points
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If f(z) is analytic on an open set containing D;(zp), then f(z)
has a convergent power series expansion for z € D,(Zzp),
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@ If f(z) is analytic on E, and z, € E, this shows that f(z) is
equal to its Taylor expansion on D,(z) :
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for the largest r such that D,(z)) C E, and r = x if E =C.

Remark: The power series expansion of f may converge
on a larger set than the largest D,(zy) contained in E.

@ If f(z) is analytic on E, then f(z) has complex derivatives
to all orders on E; in particular f'(z) is analytic.

Proof. For each z, € E, f(z) is a convergent power series
on some D,(zp), so has derivatives of all order on D,(z).



The function 14:22 is analyticon C\ {/, —i}.

e lts Taylor expansion about zy = 0 converges on D;(0).

e lts Taylor expansion about z = 10 converges on D, 57(10).

The function tan(z) is analyticon C\ {kr, k € Z}.

e lts Taylor expansion about zy = 0 converges on D, (0).

e lts Taylor expansion about zy = i converges on D\/m(i).



Fact: The power series expansion of log z about zy has radius
of convergence R = |z|, for zy # 0, and any branch of log z.

Proof. The radius of convergence for log z about z; is the same
as the radius of convergence for its derivative, (log z)’ = z~.

The function z~" is analytic on C\ {0} D D,,,(zo)-

e For any branch of log z, its power series expansion at z; is
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e If D, (20) extends across the cut line, the expansion does
not agree with that branch across the cut line.



