Lecture 22: Power series and Analytic functions

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Power series \Rightarrow analytic function: if R = radius convergence,

The function
$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 is analytic on $D_R(z_0)$,

and
$$f'(z) = \sum_{k=1}^{\infty} k a_k (z - z_0)^{k-1}$$
.

Consequence: if $f'(z) = \sum_{k=0}^{\infty} b_k (z - z_0)^k$ on $D_R(z_0)$, then

$$f(z) = f(z_0) + \sum_{k=1}^{\infty} \frac{b_{k-1}}{k} (z - z_0)^k, \quad z \in D_R(z_0)$$

• radius convergence of f(z) = radius convergence of f'(z)

Example:
$$f(z) = \log z$$
, $f'(z) = \frac{1}{z}$

Expansion of z^{-1} on |z-1| < 1:

$$\frac{1}{z} = \frac{1}{1 + (z - 1)} = \sum_{k=0}^{\infty} (-1)^k (z - 1)^k$$

Expansion of $\log z$ (principal branch) on |z-1| < 1:

$$\log z = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (z-1)^k$$

Example:
$$f(z) = \arctan z$$
, $f'(z) = \frac{1}{1+z^2}$

Expansion of
$$\frac{1}{1+z^2}$$
 on $|z|<1$:

$$\frac{1}{1+z^2} = \sum_{k=0}^{\infty} (-1)^k z^{2k}$$

Expansion of $\arctan z$ (principal branch) on |z| < 1:

arctan
$$z = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} z^{2k+1}$$

Power series expansions of analytic functions

If f(z) is analytic on an open set containing $D_r(z_0)$, then f(z) has a convergent power series expansion for $z \in D_r(z_0)$,

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad a_k = \frac{f^{(k)}(z_0)}{k!}$$

Remark: $D_r(z_0)$ is an open set containing $D_r(z_0)$.

Remark: The power series expansion of f may converge on a larger set than the largest $D_r(z_0)$ contained in E.

Fact: The power series expansion of $\log z$ about z_0 has radius of convergence $R = |z_0|$, for $z_0 \neq 0$, and any branch of $\log z$.

Proof. The radius of convergence for $\log z$ about z_0 is the same as the radius of convergence for its derivative, $(\log z)' = z^{-1}$. The function z^{-1} is analytic on $\mathbb{C} \setminus \{0\} \supset D_{|z_0|}(z_0)$.

• For any branch of $\log z$, its power series expansion at z_0 is

$$\log(z_0) + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \frac{(z-z_0)^k}{z_0^k}$$

 If D_{|Z₀|}(z₀) extends across the cut line, the series expansion does not agree with that branch across the cut line.

Theorem: Cauchy's estimates

If f(z) is analytic on an open set containing $\overline{D_r}(z_0)$, then

$$\frac{|f^{(k)}(z_0)|}{k!} \le \frac{M}{r^k}, \qquad M = \max_{|w-z_0|=r} |f(w)|$$

Proof. The coefficients $a_k = f^{(k)}(z_0)/k!$ are given by

$$a_k = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{k+1}} dz$$

Use Theorem 2.4.9: $\ell(\gamma) = 2\pi r$, $|f(w)/(w-z_0)^{k+1}| \leq M/r^{k+1}$

Remark. This proves that $\sum_{k=0} a_k (z-z_0)^k$ converges on $D_r(z_0)$;

we already knew this from the proof that it equals f(z) there.