Lecture 23: Liouville's Theorem, The Fundamental Theorem of Algebra

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Theorem: Cauchy's estimates

If f(z) is analytic on an open set containing $\overline{D_r}(z_0)$, then

$$\frac{f^{(k)}(z_0)|}{k!} \le \frac{M}{r^k}, \qquad M = \max_{|z-z_0|=r} |f(z)|$$

Proof. The coefficients $a_k = f^{(k)}(z_0)/k!$ are given by

$$a_k = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{k+1}} dz$$

Use Theorem 2.4.9: $\ell(\gamma) = 2\pi r$, $|f(z)/(z-z_0)^{k+1}| \le M/r^{k+1}$.

Remark. This proves that $\sum_{k=0}^{\infty} a_k (z - z_0)^k$ converges on $D_r(z_0)$;

we already knew this from the proof that it equals f(z) there.

Liouville's Theorem

Suppose f(z) is an entire function; that is, it is analytic on \mathbb{C} . If $|f(z)| \le M$ for all $z \in \mathbb{C}$, for some *M*, then *f* is constant.

Proof. It suffices to show that $f'(z_0) = 0$ for all $z_0 \in \mathbb{C}$.

Apply Cauchy's estimate: for every r > 0,

$$|f'(z_0)| \le \frac{1}{r} \sup_{|z-z_0|=r} |f(z)| \le \frac{M}{r}$$

Letting $r \to \infty$ shows that $|f'(z_0)| = 0$.

Entire functions of polynomial growth

Theorem

Suppose f(z) is an entire function, and $|f(z)| \le A + B|z|^n$, for some real numbers *A* and *B*. Then $f(z) = \sum_{k=0}^n a_k z^k$, some a_k .

Proof. It suffices to show that $f^{(k)}(0) = 0$ for all k > n, since the Taylor expansion of f(z) about $z_0 = 0$ equals f(z) for all $z \in \mathbb{C}$.

Apply Cauchy's estimate: for every r > 0,

$$|f^{(k)}(0)| \le rac{k!}{r^k} \sup_{|z|=r} |f(z)| \le rac{k! (A+Br^n)}{r^k}$$

Letting $r \to \infty$ shows that $|f^{(k)}(0)| = 0$ when k > n.

Lower bound estimates for polynomials

Lemma

Suppose
$$f(z) = \sum_{k=0}^{n} a_k z^k$$
, where $a_n \neq 0$. Then, for some r_0 ,
 $|f(z)| \geq \frac{1}{2} |a_n| |z|^n$, if $|z| \geq r_0$.

Proof. By the triangle inequality, we have

$$|f(z)| \geq |a_n z^n| - (|a_{n-1} z^{n-1}| + \cdots + |a_1 z| + |a_0|).$$

Take r_0 so that $r_0 \ge 2n |a_k|/|a_n|$ for all k. Then if $|z| \ge r_0$

$$|a_k||z|^k \le rac{|a_k||z|^{k+1}}{r_0} \le rac{|a_n||z|^n}{2n} \quad ext{if} \ k < n.$$

Together with the previous inequality we get $|f(z)| \ge \frac{1}{2}|a_n||z|^n$.

Theorem

Suppose that $p(z) = \sum_{k=0}^{n} a_k z^k$, where $n \ge 1$ and $a_n \ne 0$. Then p(z) = 0 for some $z \in \mathbb{C}$.

Proof. Proof by contradiction. Suppose $p(z) \neq 0$ for all *z*. Then

$$rac{1}{
ho(z)}$$
 is analytic on $\mathbb{C}, ext{ and } \left|rac{1}{
ho(z)}
ight| \leq rac{2}{\left|a_n\right|r^n} ext{ if } |z|\geq r_0 \,.$

Liouville's Theorem implies $p(z)^{-1}$ is constant, a contradiction.

The Fundamental Theorem of Algebra

Every polynomial $p(z) = \sum_{k=0}^{n} a_k z^k$ can be factored over \mathbb{C} ,

$$p(z) = a_n(z-z_n)\cdots(z-z_2)(z-z_1)$$
 where $z_j\in\mathbb{C}$.

Proof. From algebra: if $p(z_n) = 0$, then $p(z) = (z - z_n)q(z)$, where q(z) is a polynomial of order n - 1.