Lecture 24: Zeroes of analytic functions

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Assume f(z) analytic on $E \subset \mathbb{C}$, and $f(z_0) = 0$. If $|z - z_0| < R$:

$$f(z) = \sum_{k=1}^{\infty} a_k (z - z_0)^k, \qquad a_k = \frac{f^{(k)}(z_0)}{k!}$$

Two possibilities:

- If $a_k = 0$ for every k, then f(z) = 0 for $|z z_0| < R$.
- If for some m, we have $a_m \neq 0$ but $a_k = 0$ when k < m, we say that f(z) has a zero of order m at z_0 . Equivalently:
- f(z) has a zero of order m at z_0 if:

$$f^{(m)}(z_0) \neq 0$$
, and $f^{(k)}(z_0) = 0$ for $k < m$.

Examples

• sin(z) has a zero of order 1 at $z_0 = 0$:

$$\sin(z) = z - \frac{1}{3!}z^3 + \cdots$$
, so $a_0 = 0$, $a_1 \neq 0$.

Can also check: sin(z) = 0, $sin'(0) = cos(0) = 1 \neq 0$.

- sin(z) has a zero of order 1 at $z_0 = k\pi$.
- $z^3 1$ has a zero of order 1 at $z_0 = 1$:

$$z^3 - 1 = 0$$
 when $z = 1$, $(z^3 - 1)' = 3z^2 = 3$ when $z = 1$.

• $e^z - z - 1$ has a zero of order 2 at $z_0 = 0$:

$$e^z - z - 1 = \frac{1}{2!}z^2 + \frac{1}{3!}z^3 + \cdots$$

Theorem: assume f analytic on $E \subset \mathbb{C}$

If f(z) has a zero of order m at z_0 , there is g(z) analytic on E:

$$f(z) = (z - z_0)^m g(z), \quad \text{where} \quad g(z_0) \neq 0.$$

Proof. For $|z - z_0| < R$ we can write:

$$f(z) = \sum_{k=m}^{\infty} a_k (z-z_0)^k = (z-z_0)^m \sum_{k=0}^{\infty} a_{k+m} (z-z_0)^k.$$

Define:
$$g(z) = \begin{cases} \sum_{k=0}^{\infty} a_{k+m} (z-z_0)^k \,, & |z-z_0| < R \,, \\ \frac{f(z)}{(z-z_0)^m} \,, & z \neq z_0 \,. \end{cases}$$

If f(z) has a zero of order m at z_0 , then $\frac{f(z)}{(z-z_0)^m}$, defined on the set $E\setminus\{z_0\}$, extends to an analytic function on E.

Theorem: L'Hôpital's rule

If
$$f(z_0) = g(z_0) = 0$$
, then $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}$

Proof. Unless the order of zeroes of f and g at z_0 are the same, then both limits are either 0 or ∞ . If f and g have zero order m:

$$f(z) = \sum_{k=m}^{\infty} a_k (z - z_0)^k, \qquad g(z) = \sum_{k=m}^{\infty} b_k (z - z_0)^k,$$

$$f'(z) = \sum_{k=m}^{\infty} k a_k (z-z_0)^{k-1}, \qquad g'(z) = \sum_{k=m}^{\infty} k b_k (z-z_0)^{k-1},$$

$$\lim_{z\to z_0}\frac{f(z)}{g(z)}=\frac{a_m}{b_m}\,,\qquad \qquad \lim_{z\to z_0}\frac{f'(z)}{g'(z)}=\frac{ma_m}{mb_m}=\frac{a_m}{b_m}$$

Zeroes of analytic functions are isolated

Theorem: suppose f is analytic on connected open set $E \subset \mathbb{C}$.

If $f(z_0) = 0$, and f is not identically 0, then for some r > 0:

$$f(z) \neq 0$$
 if $0 < |z - z_0| < r$.

Proof. Write $f(z) = (z - z_0)^m h(z)$, $h(z_0) \neq 0$. By continuity: $h(z) \neq 0$ if $|z - z_0| < r$, for some r > 0.

Application. If $\{z_k\} \subset E$ is a sequence with $\lim_{k \to \infty} z_k = z_0 \in E$, and $f(z_k) = g(z_k)$ for all k, then f(z) = g(z) on E.

Proof. Let h(z) = f(z) - g(z). Then $h(z_0) = 0$ by continuity. For every r > 0, is some z_k with $|z_k - z_0| < r$, and $h(z_k) = 0$, so h(z) must be identically 0.