Lecture 25: The structure of isolated singularities

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Definition: Suppose f(z) is defined for $0 < |z - z_0| < r$.

We say that $\lim_{z\to z_0} f(z) = \infty$ if, for all M, there is $\delta > 0$ so that

$$|f(z)| > M$$
 if $0 < |z - z_0| < \delta$.

Examples:
$$\lim_{z\to 0} \frac{1}{z} = \infty$$
, $\lim_{z\to \pi} \tan(z) = \infty$.

• If h(z) is analytic on $D_r(z_0)$ and $h(z_0) \neq 0$, then when $m \geq 1$

$$\lim_{z\to z_0}\frac{h(z)}{(z-z_0)^m}=\infty.$$

Important fact: If
$$\lim_{z \to z_0} f(z) = \infty$$
 then $\lim_{z \to z_0} \frac{1}{f(z)} = 0$.

The function
$$g(z) = \begin{cases} 1/f(z), & z \neq z_0 \\ 0, & z = z_0 \end{cases}$$
 is continuous at z_0 .

Classification of isolated singularities

Definition: assume f is analytic on open set $E \subset \mathbb{C}$ and $z_0 \notin E$.

f has an isolated singularity at z_0 if, for some r > 0, E contains the punctured disc $D_r(z_0) \setminus \{z_0\} = \{z : 0 < |z - z_0| < r\}$.

Isolated singularities are classified as one of 3 types:

 f has a removable singularity at z₀ if f(z) is bounded on some punctured disc about z₀:

$$|f(z)| \le M$$
 when $0 < |z - z_0| < r'$, some $M, r' > 0$.

- f has a pole at z_0 if $\lim_{z\to z_0} f(z) = \infty$.
- Everything else: f has an essential singularity at z_0 .

Removable singularities

Theorem: assume f analytic on $D_r(z_0) \setminus \{z_0\}$

If f has a removable singularity at z_0 , then f equals a function that is analytic function on all of $D_r(z_0)$.

Proof. The function
$$g(z) = \begin{cases} (z - z_0)f(z), & z \neq z_0, \\ 0, & z = z_0, \end{cases}$$

- is analytic on $D_r(z_0) \setminus \{z_0\}$, and continuous on $D_r(z_0)$.
- By Lecture 15: g(z) is analytic on $D_r(z_0)$.
- Since $g(z_0) = 0$, we can write $g(z) = (z z_0)h(z)$, where h(z) is analytic on $D_r(z_0)$.
- f(z) = h(z) on $D_r(z_0) \setminus \{z_0\}$, and h(z) is analytic on $D_r(z_0)$.

Poles

Theorem: assume f(z) analytic on $D_r(z_0)\setminus\{z_0\}$

If f has a pole at z_0 , then $f(z) = \frac{h(z)}{(z - z_0)^m}$ for some m, where h(z) is an analytic function on $D_r(z_0)$, and $h(z_0) \neq 0$.

Proof. Define
$$g(z) = \begin{cases} 1/f(z), & z \neq z_0 \\ 0, & z = z_0 \end{cases}$$

- g(z) has a removable singularity at z_0 , so g(z) is analytic.
- Write $g(z) = (z z_0)^m \tilde{g}(z)$, with $\tilde{g}(z_0) \neq 0$.
- Write $f(z) = \frac{1}{g(z)} = \frac{h(z)}{(z-z_0)^m}$, where $h(z) = \frac{1}{\tilde{g}(z)}$

• If $f(z) = \frac{h(z)}{(z-z_0)^m}$, h(z) analytic on $D_r(z_0)$ and $h(z_0) \neq 0$, we say f(z) has a *pole of order m* at z_0 . (Note: m is unique.)

Equivalent definition: f has pole order m at z_0 if:

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad z \in D_r(z_0) \setminus \{z_0\}, \quad a_{-m} \neq 0$$

where $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ converges on $D_r(z_0)$.

The term
$$\sum_{k=-m}^{-1} a_k (z-z_0)^k = \frac{a_{-m}}{(z-z_0)^m} + \cdots + \frac{a_{-1}}{(z-z_0)}$$

is called the **principal part** of f at z_0 .