Lecture 28: The maximum modulus theorem

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Theorem

Assume that $f(t)$ is a continuous, real valued function on $[a, b]$, and $f(t) \leq M$ for all $t \in[a, b]$. Then if $\frac{1}{b-a} \int_{a}^{b} f(t) d t=M$, we must have $f(t)=M$ for all $t \in[a, b]$.

Corollary

Assume $f(t)$ is a continuous, complex valued function on $[a, b]$, and let $c=\frac{1}{b-a} \int_{a}^{b} f(t) d t$. Then if $|f(t)| \leq|c|$ for all $t \in[a, b]$, we must have $f(t)=c$ for all $t \in[a, b]$.

Proof. Write $c^{-1} f(t)=g(t)+i h(t)$, so $|g(t)| \leq 1$ for all $t \in[a, b]$.
Then: $1=\frac{1}{b-a} \int_{a}^{b} g(t)+i h(t) d t$, so $g(t)=1$ for all t, which means $h(t)=0$ for all t, since $\sqrt{g(t)^{2}+h(t)^{2}} \leq 1$ for all t.

Theorem: suppose $f(z)$ is analytic on $D_{r}\left(z_{0}\right)$

If $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all $z \in D_{r}\left(z_{0}\right)$, then $f(z)=f\left(z_{0}\right)$ on $D_{r}\left(z_{0}\right)$.
Proof. For any $r^{\prime}<r$, by the Cauchy integral formula

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\left|w-z_{0}\right|=r^{\prime}} \frac{f(w)}{w-z_{0}} d w=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r^{\prime} e^{i t}\right) d t
$$

By the Corollary, $f\left(z_{0}+r^{\prime} e^{i t}\right)=f\left(z_{0}\right)$ for all t. Since this holds for any $r^{\prime}<r$, we have $f(z)=f\left(z_{0}\right)$ for all $z \in D_{r}\left(z_{0}\right)$.

Maximum modulus theorem

Assume $f(z)$ is analytic on E, and continuous on \bar{E}, where E is a bounded, connected, open set. Then the maximum of $|f(z)|$ on \bar{E} occurs on ∂E (and only on ∂E if f is not constant).

Proof. $|f(z)|$ can't equal $\max _{\bar{E}}|f|$ for $z \in E$ unless f is constant.

Examples

- $\left|z^{4}-1\right|$ on $\{z:|z| \leq 1\}$. Maximum is at some $z=e^{i \theta}$,

$$
\left|e^{4 i \theta}-1\right|^{2}=(\cos (4 \theta)-1)^{2}+\sin (4 \theta)^{2}
$$

Setting the derivative equal to 0 gives $\sin (4 \theta)=0$:

$$
\theta=0, \pm \frac{\pi}{2}, \pi \text { (minimum) }, \quad \theta= \pm \frac{\pi}{4}, \pm \frac{3 \pi}{4} \quad \text { (maximum) }
$$

- $\left|e^{z}\right|$ on the square: $-1 \leq \operatorname{Re}(z) \leq 1,-1 \leq \operatorname{lm}(z) \leq 1$.

$$
\left|e^{x+i y}\right|=e^{x} \quad \text { does not depend on } y
$$

e^{x} is maximized over $-1 \leq x \leq 1$ at $x=1$, so maximum is achieved at every point on right edge of the square.

Mean value property for harmonic functions

Theorem

Suppose u is harmonic on E. Then, whenever $\overline{D_{r}}\left(z_{0}\right) \subset E$,

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Proof. There is analytic f on $\overline{D_{r}}\left(z_{0}\right) \subset E$, with $u(z)=\operatorname{Re}(f(z))$,
$u\left(z_{0}\right)=\operatorname{Re}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta$

Applying our first Theorem to $u(z)$ gives us

Maximum principle for harmonic functions

Assume u is harmonic on E, and continuous on \bar{E}, where E is a bounded, connected, open set. Then the maximum of u on \bar{E} occurs on ∂E (and only on ∂E if u is not constant).

