Lecture 4: Trig and *n*-th root functions

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

For a complex number *z*, we define

$$\cos z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} = 1 - \frac{1}{2!} z^2 + \frac{1}{4!} z^4 - \cdots$$
$$\sin z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = z - \frac{1}{3!} z^3 + \frac{1}{5!} z^5 - \cdots$$

From the relation $e^{iz} = \cos z + i \sin z$ we can write

$$\cos z = rac{e^{iz} + e^{-iz}}{2}$$
 $\sin z = rac{e^{iz} - e^{-iz}}{2i}$

• $\cos(z+2\pi) = \cos z$, $\sin(z+2\pi) = \sin z$.

Fact

The zeroes of $\sin z$ and $\cos z$ are all real numbers:

$$\begin{cases} \sin z = 0 & \text{only if } z = k\pi \\ \cos z = 0 & \text{only if } z = \frac{\pi}{2} + k\pi \end{cases}$$
 for an integer k .

Proof. $\cos z = 0$ is equivalent to

 $e^{iz} = -e^{-iz}$ hence $e^{2iz} = -1$.

By last lecture, this implies $2iz = \pi i + k 2\pi i$ some integer *k*.

•
$$\tan z = \frac{\sin z}{\cos z}$$
 is defined for $z \neq \frac{\pi}{2} + k\pi$.

Polar form and the argument of z

Polar form for
$$z \neq 0$$
 : $z = r e^{i\theta}$, $r = |z|$.

 θ is called *the argument* of *z*, we write $\theta = \arg(z)$.

- $\arg(z)$ is multi-valued function: $\theta + k 2\pi$ also works.
- Unique value in fixed interval length 2π : e.g. $-\pi < \theta \le \pi$.

Behavior under multiplication:

$$z = r_1 e^{i\theta_1}, w = r_2 e^{i\theta_2},$$
 then $zw = r_1 r_2 e^{i(\theta_1 + \theta_2)}$

Works for any choice of arg(w) and arg(z).

n-th roots of complex numbers

To solve $w^n = z$, for positive integer *n*, and $z \neq 0$:

• Write $z = re^{i\theta}$. Necessarily $w = r^{\frac{1}{n}}e^{i\theta'}$, where $e^{in\theta'} = e^{i\theta}$,

 $n\theta' = \theta + 2\pi k$ for some integer k

Obtain exactly n distinct solutions w, by taking

$$\theta' = \frac{\theta}{n} + \frac{2\pi k}{n}$$
 for $k = 0 \dots, n-1$.

Example: $w^3 = 8i$ gives $w = \{2e^{i\pi/6}, 2e^{i5\pi/6}, 2e^{i9\pi/6}\}$, or $w = \{\sqrt{3} + i, -\sqrt{3} + i, -2i\}$

Branches of the *n*-th root function

Can define a **branch** of $z^{1/n}$ by fixing range of arg(z).

Example 1: Let $\arg_{(-\pi,\pi]}(z)$ be the value of $\arg(z)$ in $(-\pi,\pi]$,

define :
$$z^{1/2} = |z|^{1/2} e^{i \arg_{(-\pi,\pi]}(z)/2}$$

- This choice of square root has positive real part.
- It is not continuous across negative real axis.

Example 2: Let $\arg_{[0,2\pi)}(z)$ be the value of $\arg(z)$ in $[0,2\pi)$,

define :
$$z^{1/2} = |z|^{1/2} e^{i \arg_{[0,2\pi)}(z)/2}$$

- This choice of square root has positive imaginary part.
- It is not continuous across positive real axis.