Lecture 5: The complex logarithm function

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Recall: polar form for $z \neq 0$: $z = r e^{i\theta}$, r = |z|.

$$\theta$$
 is called *the argument* of z , we write $\theta = \arg(z)$.

Notation. If I is a half-open interval of length 2π , and $z \neq 0$,

$$\operatorname{arg}_{\operatorname{I}}(z)$$
 is the choice of $\operatorname{arg}(z)$ with $\operatorname{arg}_{\operatorname{I}}(z) \in \operatorname{I}$

Main examples:
$$I = [0, 2\pi)$$
 or $I = (-\pi, \pi]$.

$$\arg_{[0,2\pi)}(-i) = \frac{3}{2}\pi, \qquad \arg_{(-\pi,\pi]}(-i) = -\frac{1}{2}\pi$$

• $arg_I(z)$ has a *cut line* where the value jumps by 2π .

Complex logarithms

To solve $e^w = z$, for $z \neq 0$:

• Let w = u + iv, so $e^w = e^u e^{iv}$, and write $z = |z| e^{i\theta}$.

$$\mathbf{e}^{u}\mathbf{e}^{iv}=\left|z\right|\mathbf{e}^{i\theta}\qquad\Leftrightarrow\qquad\mathbf{e}^{u}=\left|z\right|,\quad\mathbf{e}^{iv}=\mathbf{e}^{i\theta}\,.$$

• Infinitely many solutions $w: u = \log |z|, v = \theta + 2\pi k$

Describe all solutions by: $\log(z) = \log|z| + i \arg(z)$

Examples:

$$\log(2i) = \log(2) + i\frac{\pi}{2} + i2\pi k$$

$$\log(-3) = \log(3) + i\pi + i2\pi k$$

$$\log(2+5i) = \log(\sqrt{29}) + i\arctan(\frac{5}{2}) + i2\pi k$$

Branches of the logarithm function

A **branch** of $\log z$ is defined by fixing the range I of $\arg(z)$:

$$\log z = \log |z| + i \arg_{\mathrm{I}}(z)$$
 satisfies $\mathrm{Im}(\log(z)) \in \mathrm{I}$

A branch of $\log z$ jumps by $2\pi i$ as z crosses the cut line.

For any branch of $\log z$, and $z, w \neq 0$:

- $e^{\log z} = z$
- $\log(e^z) = z + i2\pi k$ for some k.
- $\log(zw) = \log z + \log w + i2\pi k$ for some k.

Branches of the *n*-th root function

Can similarly define a **branch** of $z^{1/n}$ by fixing range of arg(z).

Example 1: Let $\arg_{(-\pi,\pi]}(z)$ be the value of $\arg(z)$ in $(-\pi,\pi]$,

define:
$$z^{1/2} = |z|^{1/2} e^{i \arg_{(-\pi,\pi]}(z)/2}$$

- This choice of square root has positive real part.
- It is discontinuous across negative real axis.

Example 2: Let $\arg_{[0,2\pi)}(z)$ be the value of $\arg(z)$ in $[0,2\pi)$,

define:
$$z^{1/2} = |z|^{1/2} e^{i \arg_{[0,2\pi)}(z)/2}$$

- This choice of square root has positive imaginary part.
- It is discontinuous across positive real axis.