Lecture 5: The complex logarithm function

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Recall: polar form for $z \neq 0: \quad z=r e^{i \theta}, \quad r=|z|$.
θ is called the argument of z, we write $\theta=\arg (z)$.

Notation. If I is a half-open interval of length 2π, and $z \neq 0$,
$\arg _{\mathrm{I}}(z)$ is the choice of $\arg (z)$ with $\arg _{\mathrm{I}}(z) \in \mathrm{I}$

Main examples: $\mathrm{I}=[0,2 \pi)$ or $\mathrm{I}=(-\pi, \pi]$.

$$
\arg _{[0,2 \pi)}(-i)=\frac{3}{2} \pi, \quad \arg _{(-\pi, \pi]}(-i)=-\frac{1}{2} \pi
$$

- $\quad \arg _{\mathrm{I}}(z)$ has a cut line where the value jumps by 2π.

Complex logarithms

To solve $e^{w}=z$, for $z \neq 0$:

- Let $w=u+i v$, so $e^{w}=e^{u} e^{i v}$, and write $z=|z| e^{i \theta}$.

$$
e^{u} e^{i v}=|z| e^{i \theta} \quad \Leftrightarrow \quad e^{u}=|z|, \quad e^{i v}=e^{i \theta}
$$

- Infinitely many solutions $w: u=\log |z|, \quad v=\theta+2 \pi k$

Describe all solutions by: $\log (z)=\log |z|+i \arg (z)$

Examples:

$$
\begin{aligned}
\log (2 i) & =\log (2)+i \frac{\pi}{2}+i 2 \pi k \\
\log (-3) & =\log (3)+i \pi+i 2 \pi k \\
\log (2+5 i) & =\log (\sqrt{29})+i \arctan \left(\frac{5}{2}\right)+i 2 \pi k
\end{aligned}
$$

Branches of the logarithm function

A branch of $\log z$ is defined by fixing the range I of $\arg (z)$:

$$
\log z=\log |z|+i \arg _{\mathrm{I}}(z) \quad \text { satisfies } \quad \operatorname{lm}(\log (z)) \in \mathrm{I}
$$

A branch of $\log z$ jumps by $2 \pi i$ as z crosses the cut line.

For any branch of $\log z$, and $z, w \neq 0$:

- $\quad e^{\log z}=z$
- $\quad \log \left(e^{z}\right)=z+i 2 \pi k$ for some k.
- $\log (z w)=\log z+\log w+i 2 \pi k$ for some k.

Branches of the n-th root function

Can similarly define a branch of $z^{1 / n}$ by fixing range of $\arg (z)$.
Example 1: Let $\arg _{(-\pi, \pi]}(z)$ be the value of $\arg (z)$ in $(-\pi, \pi]$,

$$
\text { define : } \quad z^{1 / 2}=|z|^{1 / 2} e^{i \arg _{(-\pi, \pi \mid}(z) / 2}
$$

- This choice of square root has positive real part.
- It is discontinuous across negative real axis.

Example 2: Let $\arg _{[0,2 \pi)}(z)$ be the value of $\arg (z)$ in $[0,2 \pi)$,

$$
\text { define : } \quad z^{1 / 2}=|z|^{1 / 2} e^{i \arg _{[0,2 \pi)}(z) / 2}
$$

- This choice of square root has positive imaginary part.
- It is discontinuous across positive real axis.

