Lecture 6: Topology of ℂ

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Open subsets of $\ensuremath{\mathbb{C}}$

Notation

- $\mathbb C$ is the set of complex numbers, $\ \mathbb R$ the set of real numbers.

-
$$D_r(z_0) = \{w : |w - z_0| < r\}, \quad \overline{D_r}(z_0) = \{w : |w - z_0| \le r\}.$$

Definition

We say that a set $E \subset \mathbb{C}$ is *open* if, for every $z \in E$, there is some r > 0 so that $D_r(z) \subset E$.

- Both the empty set \emptyset and \mathbb{C} are open.
- $D_r(z_0)$ is open (for every *r* and z_0), but $\overline{D_r}(z_0)$ is not open.
- The complement of $\overline{D_r}(z_0)$, denoted $\mathbb{C} \setminus \overline{D_r}(z_0)$, is open.
- The set $\{z : Im(z) > 0\}$ is open.

Theorem

- The union of any collection of open sets is open.
- The intersection of a finite collection of open sets is open.

A nonstandard definition

A point z is strictly inside E if $D_r(z) \subset E$ for some r > 0.

• *E* is open if every point in *E* is strictly inside *E*.

Definition

The interior of *E*, denoted E^o , is the set of all points that are strictly inside *E*.

- E^o is the largest open subset of E.
- $D_r(z_0)$ equals the interior of $\overline{D_r}(z_0)$.

Closed sets

Definition

A set $E \subset \mathbb{C}$ is *closed* if $\mathbb{C} \setminus E$ is open.

- Both the empty set \emptyset and \mathbb{C} are closed.
- $\overline{D_r}(z_0)$ is closed.
- The intersection of any collection of closed sets is closed, and the union of a finite collection of closed sets is closed.

Definition

The closure of *E*, denoted \overline{E} , is the set of $z \in \mathbb{C}$ such that $D_r(z)$ intersects *E* for every r > 0.

- \overline{E} is closed for every set *E*.
- \overline{E} is the smallest closed set containing E.

The boundary of a set

Definition

The boundary of *E*, denoted ∂E , is $\overline{E} \setminus E^o$.

- $z \in \partial E$ if z in neither strictly inside nor strictly outside E.
- $z \in \partial E$ if $D_r(z)$ intersects both E and $\mathbb{C} \setminus E$ for every r > 0.
- For any set E, \mathbb{C} is the disjoint union $E^o \cup \partial E \cup (\mathbb{C} \setminus E)^o$.

• For
$$r > 0$$
, $\partial D_r(z) = \partial \overline{D_r}(z) = \{w : |w - z| = r\}.$

• $\partial \{z : \operatorname{Im}(z) > 0\} = \partial \{z : \operatorname{Im}(z) \ge 0\} = \{z : \operatorname{Im}(z) = 0\}.$