Lecture 7: Continuous functions

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Continuous functions in $\mathbb C$.

Idea: f(z) continuous if: |f(w) - f(z)| is small if |w - z| is.

Definition

Suppose $E \subset \mathbb{C}$, and $f : E \to \mathbb{C}$. Then f is continuous on E if for all $\epsilon > 0$ and $w \in E$, there exists $\delta > 0$ so that

 $|f(z) - f(w)| < \epsilon$ when $|z - w| < \delta$ and $z \in E$,

equivalently, the image of $D_{\delta}(w) \cap E$ is contained in $D_{\epsilon}(f(w))$.

Examples:

- f(z) = |z| is continuous on \mathbb{C} .
- $f(z) = z^n$ is continuous on \mathbb{C} .
- $f(z) = z^{-1}$ is continuous on $\mathbb{C} \setminus \{0\}$.

Composition of continuous maps

Theorem

Suppose $E, U \subset \mathbb{C}$, f continuous on E, g continuous on U, and $f(E) \subset U$. Then $(g \circ f)(z) = g(f(z))$ is continuous on E.

Proof. Assume $z, w \in E$, so $f(z), f(w) \in U$. Then $|g(f(z)) - g(f(w))| < \epsilon$ if $|f(z) - f(w)| < \delta'$, some δ' , and $|f(z) - f(w)| < \delta'$ if $|z - w| < \delta$, some δ .

Theorem

Suppose $E \subset \mathbb{C}$, and f, g are continuous on E. Then so are f(z) + g(z) and f(z)g(z), and f(z)/g(z) assuming $g(z) \neq 0$.

The principal branch of log(z) is continuous on $\mathbb{C} \setminus (-\infty, 0]$, that is, on the union $\{ \text{Im } z > 0 \} \cup \{ \text{Im } z < 0 \} \cup \{ \text{Re } z > 0 \}$.

Fact: If $E = \bigcup_j E_j$ where each E_j is **open**, then *f* is continuous on *E* if *f* is continuous on each E_j .

because: If $w \in E$ then $w \in E_j$, some *j*.

Continuity at w follows by continuity on E_j .

• $\log |z|$ is continuous on $\mathbb{C} \setminus \{0\}$ by the composition rule.

•
$$\arg_{(-\pi,\pi]}(z) = \begin{cases} \arctan\left(\operatorname{Im} z / \operatorname{Re} z\right), & \operatorname{Re} z > 0\\ \operatorname{arccot}(\operatorname{Re} z / \operatorname{Im} z), & \operatorname{Im} z > 0\\ \operatorname{arccot}(\operatorname{Re} z / \operatorname{Im} z) - \pi, & \operatorname{Im} z < 0 \end{cases}$$

The principal branch of $\log(z)$ is **not** continuous on $\mathbb{C} \setminus \{0\}$.

Theorem: assume *f* is continuous

Suppose that f maps \mathbb{C} to either \mathbb{C} or \mathbb{R} . If E is open, then the pre-image $f^{-1}(E) = \{z : f(z) \in E\}$ is an open subset of \mathbb{C} .

Proof. Show if $w \in f^{-1}(E)$, then $D_{\delta}(w) \subset f^{-1}(E)$ some $\delta > 0$.

- Since E open, $E \supset D_{\epsilon}(f(w)), \ \epsilon > 0.$
- *f* continuous, so $f(z) \in D_{\epsilon}(f(w)) \subset E$ if $|w z| < \delta$.

Example: $\{z : |z^3 + z| < 1\}$ is open.

Fact

Suppose $E \subset \mathbb{C}$ is open, and *f* is a function from *E* to \mathbb{C} . Then *f* is continuous if and only if the following property holds:

 $f^{-1}(U)$ is an open subset of *E* whenever *U* is open.