Lecture 7: Continuous functions

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Continuous functions in \mathbb{C}.

Idea: $f(z)$ continuous if: $|f(w)-f(z)|$ is small if $|w-z|$ is.

Definition

Suppose $E \subset \mathbb{C}$, and $f: E \rightarrow \mathbb{C}$. Then f is continuous on E if for all $\epsilon>0$ and $w \in E$, there exists $\delta>0$ so that

$$
|f(z)-f(w)|<\epsilon \quad \text { when } \quad|z-w|<\delta \quad \text { and } \quad z \in E
$$

equivalently, the image of $D_{\delta}(w) \cap E$ is contained in $D_{\epsilon}(f(w))$.

Examples:

- $f(z)=|z|$ is continuous on \mathbb{C}.
- $f(z)=z^{n}$ is continuous on \mathbb{C}.
- $f(z)=z^{-1}$ is continuous on $\mathbb{C} \backslash\{0\}$.

Composition of continuous maps

Theorem

Suppose $E, U \subset \mathbb{C}$, f continuous on E, g continuous on U, and $f(E) \subset U$. Then $(g \circ f)(z)=g(f(z))$ is continuous on E.

Proof. Assume $z, w \in E$, so $f(z), f(w) \in U$. Then

$$
\begin{aligned}
& |g(f(z))-g(f(w))|<\epsilon \quad \text { if } \quad|f(z)-f(w)|<\delta^{\prime}, \quad \text { some } \delta^{\prime} \\
& \text { and } \quad|f(z)-f(w)|<\delta^{\prime} \quad \text { if } \quad|z-w|<\delta, \quad \text { some } \delta .
\end{aligned}
$$

Theorem

Suppose $E \subset \mathbb{C}$, and f, g are continuous on E. Then so are $f(z)+g(z)$ and $f(z) g(z)$, and $f(z) / g(z)$ assuming $g(z) \neq 0$.

The principal branch of $\log (z)$ is continuous on $\mathbb{C} \backslash(-\infty, 0]$, that is, on the union $\{\operatorname{lm} z>0\} \cup\{\operatorname{lm} z<0\} \cup\{\operatorname{Re} z>0\}$.

Fact: If $E=\cup_{j} E_{j}$ where each E_{j} is open, then f is continuous on E if f is continuous on each E_{j}. because: If $w \in E$ then $w \in E_{j}$, some j.

Continuity at w follows by continuity on E_{j}.

- $\log |z|$ is continuous on $\mathbb{C} \backslash\{0\}$ by the composition rule.
- $\arg _{(-\pi, \pi]}(z)= \begin{cases}\arctan (\operatorname{Im} z / \operatorname{Re} z), & \operatorname{Re} z>0 \\ \operatorname{arccot}(\operatorname{Re} z / \operatorname{lm} z), & \operatorname{Im} z>0 \\ \operatorname{arccot}(\operatorname{Re} z / \operatorname{lm} z)-\pi, & \operatorname{Im} z<0\end{cases}$

The principal branch of $\log (z)$ is not continuous on $\mathbb{C} \backslash\{0\}$.

Theorem: assume f is continuous

Suppose that f maps \mathbb{C} to either \mathbb{C} or \mathbb{R}. If E is open, then the pre-image $f^{-1}(E)=\{z: f(z) \in E\}$ is an open subset of \mathbb{C}.

Proof. Show if $w \in f^{-1}(E)$, then $D_{\delta}(w) \subset f^{-1}(E)$ some $\delta>0$.

- Since E open, $E \supset D_{\epsilon}(f(w)), \epsilon>0$.
- f continuous, so $f(z) \in D_{\epsilon}(f(w)) \subset E$ if $|w-z|<\delta$.

Example: $\left\{z:\left|z^{3}+z\right|<1\right\}$ is open.

Fact
Suppose $E \subset \mathbb{C}$ is open, and f is a function from E to \mathbb{C}. Then f is continuous if and only if the following property holds:
$f^{-1}(U)$ is an open subset of E whenever U is open.

