Lecture 8: Branches of multi-valued functions

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Theorem: assume f is continuous

Suppose that f maps \mathbb{C} to either \mathbb{C} or \mathbb{R}. If E is open, then the pre-image $f^{-1}(E)=\{z: f(z) \in E\}$ is an open subset of \mathbb{C}.

Proof. Show if $w \in f^{-1}(E)$, then $D_{\delta}(w) \subset f^{-1}(E)$ some $\delta>0$.

- Since E open, $E \supset D_{\epsilon}(f(w)), \epsilon>0$.
- f continuous, so $f(z) \in D_{\epsilon}(f(w)) \subset E$ if $|w-z|<\delta$.

Example: $\left\{z:\left|z^{3}+z\right|<1\right\}$ is open.

Fact
Suppose $E \subset \mathbb{C}$ is open, and f is a function from E to \mathbb{C}. Then f is continuous if and only if the following property holds:
$f^{-1}(U)$ is an open subset of E whenever U is open.

A multi-valued function f on $E \subset \mathbb{C}$ assigns a set of complex values to each $z \in E$, i.e. $f(z)$ is a set of complex numbers.

Examples:

- $\log z=\log |z|+i \arg (z)$ with domain $E=\mathbb{C} \backslash\{0\}$.

The multiple values of $\log z$ differ by $k 2 \pi i$

- \sqrt{z} assigns to $z \in \mathbb{C}$ the numbers w with $w^{2}=z$.

If $z \neq 0, \sqrt{z}$ has exactly two values, of the form $\{w,-w\}$.

- $\sqrt{z^{2}-1}$ assigns to $z \in \mathbb{C}$ the $w \in \mathbb{C}$ with $w^{2}=z^{2}-1$.

A branch of a multi-valued function f on $E \subset \mathbb{C}$ is a function that assigns to each $z \in E$ one value from $f(z)$.

Principal branch of $z^{\frac{1}{n}}$.

The principal branch of $\log z$ is $\log |z|+i \arg _{(-\pi, \pi]}(z), z \neq 0$.

- For any branch of $\log z$,

$$
\left(e^{\frac{1}{n} \log z}\right)^{n}=e^{\log z}=z
$$

The principal branch of $z^{\frac{1}{n}}=\sqrt[n]{z}$, for $z \neq 0$, is the function

$$
e^{\left(\log |z|+i \arg _{(-\pi, \pi j}(z)\right) / n}=|z|^{\frac{1}{n}} e^{\frac{1}{n} \arg _{(-\pi, \pi j}(z)}
$$

- Gives unique solution to $w^{n}=z$ such that $\arg (w) \in\left(-\frac{\pi}{n}, \frac{\pi}{n}\right]$
- The principal branch of $z^{\frac{1}{n}}$ is continuous on $\mathbb{C} \backslash(-\infty, 0]$.

Two branches for the square root of z^{2}

- Consider $\sqrt{z^{2}-1} ; \sqrt{ }$. the principal branch of square root. Let $E=\left\{z: z^{2}-1 \in \mathbb{C} \backslash(-\infty, 0]\right\} . E$ is an open set, and

$$
E=\mathbb{C} \backslash\{[-1,1] \cup i \mathbb{R}\}
$$

Each point $z \in(-1,1) \cup i \mathbb{R}$ is a point of discontinuity.

- $w=\sqrt{z-1} \sqrt{z+1}$ also solves $w^{2}=z^{2}-1$.

By composition, this is continuous on $F=\mathbb{C} \backslash(-\infty, 1]$.

- In fact, it is continuous on $\mathbb{C} \backslash[-1,1]$, and each point in $(-1,1)$ is a point of discontinuity.

