Lecture 9: Complex differentiation

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 427, Autumn 2019

Differentiability over \mathbb{C}

Assume $E \subset \mathbb{C}$ is open, and f is a function from E to \mathbb{C}.

Definition

We say that f is differentiable at a point $w \in E$ if

$$
f^{\prime}(w)=\lim _{z \rightarrow w} \frac{f(z)-f(w)}{z-w} \quad \text { exists. }
$$

We say f is analytic on E if it's differentiable at every $w \in E$.
Differentiable at w means: There exists a number $f^{\prime}(w) \in \mathbb{C}$:
For every $\epsilon>0$, there exists $\delta>0$ so that

$$
\left|\frac{f(z)-f(w)}{z-w}-f^{\prime}(w)\right|<\epsilon \quad \text { if } \quad 0<|z-w|<\delta
$$

Consequences for continuity of f on E

- If f is differentiable at w then f is continuous at w.
- If f is differentiable at w, and for $z \in E$ we define

$$
F(z)=\left\{\begin{array}{cc}
\frac{f(z)-f(w)}{z-w}, & z \neq w \\
f^{\prime}(w), & z=w
\end{array}\right.
$$

Then $F(z)$ is continuous at w.

- $f(z)=1$ is differentiable at all $w \in \mathbb{C}$, with $f^{\prime}(w)=0$.
- $f(z)=z$ is differentiable at all $w \in \mathbb{C}$, with $f^{\prime}(w)=1$.
- $f(z)=\bar{z}$ is not differentiable at any w.
- $f(z)=e^{z}$ is differentiable at all $w \in \mathbb{C}$, with $f^{\prime}(w)=e^{w}$.

Proof. Write

$$
\frac{e^{w+\lambda}-e^{w}}{\lambda}=e^{w}\left(\frac{e^{\lambda}-1}{\lambda}\right)
$$

By the definition of e^{λ},

$$
\frac{e^{\lambda}-1}{\lambda}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{(k+1)!}
$$

which has limit 1 as λ goes to 0 .

The usual rules for derivatives hold

Sum and product rules: assume f, g differentiable at w.
Then so are $f+g$ and $f \cdot g$, and
$(f+g)^{\prime}(w)=f^{\prime}(w)+g^{\prime}(w)$,
$(f \cdot g)^{\prime}(w)=f^{\prime}(w) g(w)+f(w) g^{\prime}(w)$.

Chain rule

If g is differentiable at w, and f is differentiable at $g(w)$, then $(f \circ g)(z)$ is differentiable at w, and $(f \circ g)^{\prime}(w)=f^{\prime}(g(w)) g^{\prime}(w)$.

Proof. Take limit as $z \rightarrow w$, so $g(z) \rightarrow g(w)$, in the expression

$$
\frac{f(g(z))-f(g(w))}{z-w}=\left(\frac{f(g(z))-f(g(w))}{g(z)-g(w)}\right)\left(\frac{g(z)-g(w)}{z-w}\right)
$$

Complex form of Taylor's theorem

Note: $\left|\frac{f(w+\lambda)-f(w)}{\lambda}-f^{\prime}(w)\right|=\frac{\left|f(w+\lambda)-f(w)-f^{\prime}(w) \lambda\right|}{|\lambda|}$

Equivalent definition

f is differentiable at w if there is a complex number $f^{\prime}(w)$ so

$$
f(w+\lambda)=f(w)+f^{\prime}(w) \lambda+r(\lambda), \text { where } \lim _{\lambda \rightarrow 0} \frac{|r(\lambda)|}{|\lambda|}=0
$$

Compare to real differentiability of $\binom{x}{y} \rightarrow F(x, y)=\binom{u(x, y)}{v(x, y)}$

$$
F(x+s, y+t)=F(x, y)+D F(x, y) \cdot\binom{s}{t}+r(s, t)
$$

