Lecture 9: Complex differentiation

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 427, Autumn 2019

Differentiability over $\mathbb C$

Assume $E \subset \mathbb{C}$ is open, and f is a function from E to \mathbb{C} .

Definition

We say that *f* is differentiable at a point $w \in E$ if

$$f'(w) = \lim_{z \to w} \frac{f(z) - f(w)}{z - w}$$
 exists.

We say *f* is analytic on *E* if it's differentiable at every $w \in E$.

Differentiable at *w* **means**: There exists a number $f'(w) \in \mathbb{C}$: For every $\epsilon > 0$, there exists $\delta > 0$ so that

$$\left| \frac{f(z)-f(w)}{z-w} - f'(w) \right| < \epsilon \quad \text{if} \quad 0 < |z-w| < \delta.$$

Consequences for continuity of *f* on *E*

- If *f* is differentiable at *w* then *f* is continuous at *w*.
- If f is differentiable at w, and for $z \in E$ we define

$$F(z) = \begin{cases} \frac{f(z) - f(w)}{z - w}, & z \neq w \\ f'(w), & z = w \end{cases}$$

Then F(z) is continuous at w.

Examples (all defined on $E = \mathbb{C}$)

- f(z) = 1 is differentiable at all $w \in \mathbb{C}$, with f'(w) = 0.
- f(z) = z is differentiable at all $w \in \mathbb{C}$, with f'(w) = 1.
- $f(z) = \overline{z}$ is **not** differentiable at any *w*.
- $f(z) = e^z$ is differentiable at all $w \in \mathbb{C}$, with $f'(w) = e^w$. **Proof.** Write

$$\frac{e^{w+\lambda}-e^w}{\lambda}=e^w\left(\frac{e^{\lambda}-1}{\lambda}\right)$$

By the definition of e^{λ} ,

$$\frac{e^{\lambda}-1}{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{(k+1)!}$$

which has limit 1 as λ goes to 0.

The usual rules for derivatives hold

Sum and product rules: assume f, g differentiable at w.

Then so are f + g and $f \cdot g$, and

 $(f+g)'(w) = f'(w)+g'(w), \quad (f \cdot g)'(w) = f'(w)g(w)+f(w)g'(w).$

Chain rule

If g is differentiable at w, and f is differentiable at g(w), then $(f \circ g)(z)$ is differentiable at w, and $(f \circ g)'(w) = f'(g(w)) g'(w)$.

Proof. Take limit as $z \to w$, so $g(z) \to g(w)$, in the expression

$$\frac{f(g(z)) - f(g(w))}{z - w} = \left(\frac{f(g(z)) - f(g(w))}{g(z) - g(w)}\right) \left(\frac{g(z) - g(w)}{z - w}\right)$$

Complex form of Taylor's theorem

Note:
$$\left| \frac{f(w+\lambda) - f(w)}{\lambda} - f'(w) \right| = \frac{\left| f(w+\lambda) - f(w) - f'(w) \lambda \right|}{\left| \lambda \right|}$$

Equivalent definition

f is differentiable at w if there is a complex number f'(w) so

$$f(w + \lambda) = f(w) + f'(w) \lambda + r(\lambda)$$
, where $\lim_{\lambda \to 0} \frac{|r(\lambda)|}{|\lambda|} = 0$.

Compare to real differentiability of $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow F(x, y) = \begin{pmatrix} u(x, y) \\ v(x, y) \end{pmatrix}$

$$F(x+s,y+t) = F(x,y) + DF(x,y) \cdot \binom{s}{t} + r(s,t)$$