Math 427 Final Exam Practice Problems

- 1. Find the order of the zero of f(z) at z_0 , for:
 - (a.) $f(z) = z(\sin z)^2$, $z_0 = \pi$.
 - (b.) $f(z) = (z^2 + 1)^3$, $z_0 = i$.
 - (c.) $f(z) = (z^2 + 4\pi^2)(e^z 1), \quad z_0 = 2\pi i.$
- **2.** (a.) Find the radius of convergence of the Taylor expansion of $\frac{e^z}{z^2+1}$ about $z_0=\frac{1}{2}$.
 - (b.) Find the values of a_0, a_1, a_2 , in the series expansion $\log(1 + \sin z) = \sum_{k=0}^{\infty} a_k z^k$ about $z_0 = 0$.

Here, log is the principal branch of the logarithm. (You do not need to find the other a_k .)

3. Find the isolated singularities of the following functions, and say whether they are removable singularities, poles, or essential singularities.

If one of the singularities is a pole, find the principal part of the function at one of the poles (you can choose which one).

- (a.) $\frac{z^3}{\sin z}$
- (b.) $\frac{e^z}{(z^2+1)^2}$
- (c.) $\frac{e^{2z}-1}{z}$
- (d.) $z^2 \sin\left(\frac{1}{z}\right)$
- (e.) $\frac{\cos z}{(z^2 \pi^2/4)^2}$
- **4.** Evaluate the following contour integral; the contour goes counter-clockwise around $\partial D_2(2)$.

$$\int_{|z-2|=2} \frac{e^z}{(z-1)(z+1)} \ dz$$