Math 427 Final Exam Practice Problem Solutions

1. Find the order of the zero of $f(z)$ at z_{0}, for:
(a.) $f(z)=z(\sin z)^{2}, \quad z_{0}=\pi . \quad$ Answer $=2$.
(b.) $f(z)=\left(z^{2}+1\right)^{3}, \quad z_{0}=i . \quad$ Answer $=3$.
(c.) $f(z)=\left(z^{2}+4 \pi^{2}\right)\left(e^{z}-1\right), \quad z_{0}=2 \pi i . \quad$ Answer $=2$.
2. (a.) Find the radius of convergence of the Taylor expansion of $\frac{e^{z}}{z^{2}+1}$ about $z_{0}=\frac{1}{2}$.

Answer $=\sqrt{\frac{5}{4}}=$ distance of $\frac{1}{2}$ to pole at $z=i($ or $z=-i)=$ radius of largest disc on which the function is analytic.
(b.) Find the values of a_{0}, a_{1}, a_{2}, in the series expansion $\log (1+\sin z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ about $z_{0}=0$. Here, \log is the principal branch of the logarithm. (You do not need to find the other a_{k}.) Answer. Use $a_{k}=\frac{1}{k!} f^{(k)}(0)$ to find $a_{0}=0, a_{1}=1, a_{2}=-\frac{1}{2}$.
3. Find the isolated singularities of the following functions, and say whether they are removable singularities, poles, or essential singularities.
If one of the singularities is a pole, find the principal part of the function at one of the poles (you can choose which one).
(a.) $\frac{z^{3}}{\sin z}$ Answer. Isolated singularities where $\sin z$ has (simple) zeroes, $\{z=k \pi, k \in \mathbb{Z}\}$.

At $k=0$ a removable singularity, at all other k a pole of order 1 .
At $z=\pi$ principal part $-\pi^{3} /(z-\pi)$.
(b.) $\frac{e^{z}}{\left(z^{2}+1\right)^{2}} \quad$ Answer. Poles of order 2 at $z= \pm i$.

At $z=i$, write as $f(z) /(z-i)^{2}$ with $f(z)=e^{z} /(z+i)^{2}$.
Principal part is $f(i) /(z-i)^{2}+f^{\prime}(i) /(z-i) \quad$ (I'll let you figure out the derivative).
(c.) $\frac{e^{2 z}-1}{z} \quad$ Answer. Removable singularity at $z=0$.
(d.) $\quad z^{2} \sin \left(\frac{1}{z}\right) \quad$ Answer. Essential singularity at $z=0$.
(e.) $\frac{\cos z}{\left(z^{2}-\pi^{2} / 4\right)^{2}} \quad$ Answer. Simple poles at $z= \pm \frac{\pi}{2}$. At $z=\frac{\pi}{2}$, write as $f(z) /\left(z-\frac{\pi}{2}\right)^{2}$, where $f(z)=(\cos z) /\left(z+\frac{\pi}{2}\right)^{2}$; pole is simple since $f\left(\frac{\pi}{2}\right)=0$.
Principal part is $f^{\prime}\left(\frac{\pi}{2}\right) /\left(z-\frac{\pi}{2}\right)=-\pi^{-2} /\left(z-\frac{\pi}{2}\right)$
4. Evaluate the following contour integral; the contour goes counter-clockwise around $\partial D_{2}(2)$.

$$
\int_{|z-2|=2} \frac{e^{z}}{(z-1)(z+1)} d z
$$

Answer. Write as $f(z) /(z-1)$ where $f(z)=e^{z} /(z+1)$. Use Cauchy integral formula to get $2 \pi i f(1)=\pi i e$.

