Math 427 Final Exam Practice Problem Solutions

- **1.** Find the order of the zero of f(z) at z_0 , for:
 - (a.) $f(z) = z(\sin z)^2$, $z_0 = \pi$. **Answer** = 2.
 - (b.) $f(z) = (z^2 + 1)^3$, $z_0 = i$. Answer = 3.
 - (c.) $f(z) = (z^2 + 4\pi^2) (e^z 1), \quad z_0 = 2\pi i.$ Answer = 2.

2. (a.) Find the radius of convergence of the Taylor expansion of $\frac{e^z}{z^2+1}$ about $z_0 = \frac{1}{2}$.

Answer = $\sqrt{\frac{5}{4}}$ = distance of $\frac{1}{2}$ to pole at z = i (or z = -i) = radius of largest disc on which the function is analytic.

(b.) Find the values of a_0, a_1, a_2 , in the series expansion $\log(1 + \sin z) = \sum_{k=0}^{\infty} a_k z^k$ about $z_0 = 0$.

Here, log is the principal branch of the logarithm. (You do not need to find the other a_k .) **Answer**. Use $a_k = \frac{1}{k!} f^{(k)}(0)$ to find $a_0 = 0$, $a_1 = 1$, $a_2 = -\frac{1}{2}$.

3. Find the isolated singularities of the following functions, and say whether they are removable singularities, poles, or essential singularities.

If one of the singularities is a pole, find the principal part of the function at one of the poles (you can choose which one).

- (a.) $\frac{z^3}{\sin z}$ **Answer**. Isolated singularities where $\sin z$ has (simple) zeroes, $\{z = k\pi, k \in \mathbb{Z}\}$. At k = 0 a removable singularity, at all other k a pole of order 1. At $z = \pi$ principal part $-\pi^3/(z - \pi)$.
- (b.) $\frac{e^z}{(z^2+1)^2}$ Answer. Poles of order 2 at $z = \pm i$. At z = i, write as $f(z)/(z-i)^2$ with $f(z) = e^z/(z+i)^2$. Principal part is $f(i)/(z-i)^2 + f'(i)/(z-i)$ (I'll let you figure out the derivative).
- (c.) $\frac{e^{2z}-1}{z}$ Answer. Removable singularity at z = 0.
- (d.) $z^2 \sin\left(\frac{1}{z}\right)$ Answer. Essential singularity at z = 0.
- (e.) $\frac{\cos z}{(z^2 \pi^2/4)^2} \quad \text{Answer. Simple poles at } z = \pm \frac{\pi}{2}. \text{ At } z = \frac{\pi}{2}, \text{ write as } f(z)/(z \frac{\pi}{2})^2,$ where $f(z) = (\cos z)/(z + \frac{\pi}{2})^2$; pole is simple since $f(\frac{\pi}{2}) = 0.$ Principal part is $f'(\frac{\pi}{2})/(z - \frac{\pi}{2}) = -\pi^{-2}/(z - \frac{\pi}{2})$
- 4. Evaluate the following contour integral; the contour goes counter-clockwise around $\partial D_2(2)$.

$$\int_{|z-2|=2} \frac{e^z}{(z-1)(z+1)} \, dz$$

Answer. Write as f(z)/(z-1) where $f(z) = e^{z}/(z+1)$. Use Cauchy integral formula to get $2\pi i f(1) = \pi i e$.