Math 427, Autumn 2017, Homework 1 Solutions

Section 1.1: 5

Solution. Let x, y denote real numbers. Expanding $(x+i y)^{2}=i$ gives

$$
x^{2}-y^{2}+2 x y i=0+1 i \quad \Rightarrow \quad x^{2}-y^{2}=0, \quad 2 x y=1 .
$$

$x^{2}=y^{2}$ gives $x=y$ or $x=-y$. When $x=y$, the second equation gives $2 x^{2}=1 \Rightarrow x= \pm \frac{1}{\sqrt{2}}$. This leads to square roots of $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$ and $-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i$.
If we tried $x=-y$, we would be led to $-2 x^{2}=1$, but this does not have any real solutions x.

Section 1.1: 11
Solution. If a is real, and x, y are real, then $a x$ and $a y$ are real. From $a(x+i y)=a x+i a y$, we see that $a x$ is the real part of $a(x+i y)$ and ay the imaginary part.
On the other hand, $i(x+i y)=i x-y=(-y)+i x$. So the real and imaginary parts of $i(x+i y)$ are respectively $-y$ and x.

Section 1.1: 15

Solution.

$$
\frac{\overline{1}}{z}=\frac{\overline{\bar{z}}}{|z|^{2}}=\frac{\overline{\bar{z}}}{|z|^{2}}=\frac{\overline{\bar{z}}}{|\bar{z}|^{2}}=\frac{1}{\bar{z}}
$$

One can also work in (x, y) form:

$$
\overline{\frac{1}{x+i y}}=\frac{x}{\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}}=\frac{x}{x^{2}+y^{2}}+i \frac{y}{x^{2}+y^{2}}=\frac{1}{x-i y}
$$

For the other part,

$$
1=\left|z \frac{1}{z}\right|=|z|\left|\frac{1}{z}\right| \quad \text { so } \quad \frac{1}{|z|}=\left|\frac{1}{z}\right|
$$

Section 1.2: 1

Solution. Given some $\epsilon>0$, we need to find N so that

$$
\left|\frac{1}{2+n i}-0\right|=\frac{1}{|2+n i|}=\frac{1}{\sqrt{4+n^{2}}}<\epsilon .
$$

We can rewrite the last inequality as

$$
\sqrt{4+n^{2}}>\epsilon^{-1} \quad \Leftrightarrow \quad n^{2}>\epsilon^{-2}-4
$$

If we take $N>\epsilon^{-1}$, then $n>N$ implies $n^{2}>\epsilon^{-2}$, which gives the desired inequality.

Section 1.2: 2
Solution. The triangle inequality gives

$$
|z| \leq|z-w|+|w|, \quad \text { so } \quad|z|-|w| \leq|z-w|
$$

Similarly

$$
|w| \leq|z-w|+|z|, \quad \text { so } \quad|w|-|z| \leq|z-w|
$$

Together these imply $||z|-|w|| \leq|z-w|$.
Section 1.3: 4

Solution.

$$
1+\sqrt{3} i=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
$$

Note that $z=\log 2+i \frac{\pi}{3}$ satisfies

$$
e^{z}=e^{\log 2} e^{i \frac{\pi}{3}}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
$$

So $z=\log 2+i \frac{\pi}{3}$ is one solution; all other solutions differ by $i 2 \pi k$, where k is any integer, so all solutions are given by

$$
z=\log 2+i \frac{\pi}{3}+i 2 \pi k, \quad \text { for some integer } k
$$

Section 1.3: 6
Solution. Let $z=x+i y$. We have $e^{x+i y}=e^{x} e^{i y}=e^{x} \cos y+i e^{x} \sin y$. Then

$$
\left|e^{z}\right|=\left(e^{x} \cos y\right)^{2}+\left(e^{x} \sin y\right)^{2}=e^{x}\left(\cos ^{2} y+\sin ^{2} y\right)=e^{x}=e^{\operatorname{Re}(z)}
$$

Also, $\operatorname{Re}(z) \leq|\operatorname{Re}(z)| \leq|z|$, and e^{x} is increasing in x, so

$$
e^{\operatorname{Re}(z)} \leq e^{|z|}
$$

Section 1.3: 9
Solution. $e^{z}=e^{x} \cos y+i e^{x} \sin y$ is real if and only if $\sin y=0$ (since $e^{x} \neq 0$). This happens if $y=\pi k$, for k an integer, so

$$
e^{z} \text { is real if and only if } \operatorname{Re}(z)=k \pi \text {. }
$$

Similarly, $e^{z}=e^{x} \cos y+i e^{x} \sin y$ is pure imaginary when $\cos y=0$, so
e^{z} is pure imaginary if and only if $\operatorname{Im}(z)=\frac{\pi}{2}+k \pi$.

Additional Problem 1:

Solution.

$$
\begin{aligned}
& |z|=|1+3 i|=\sqrt{1+9}=\sqrt{10} \\
& |w|=|2-5 i|=\sqrt{4+25}=\sqrt{29} \\
& |z+w|=|3-2 i|=\sqrt{9+4}=\sqrt{13}
\end{aligned}
$$

Check that $\sqrt{10}+\sqrt{29} \geq \sqrt{13}$ easily since $\sqrt{29}>\sqrt{13}$.

Additional Problem 2.1:

Solution. The modulus of the ratio of the $j+1$ term to the j term is

$$
\left|\frac{\frac{z^{j+1}}{2(j+1)}}{\frac{z j}{2 j}}\right|=\frac{2 j}{2 j+2}|z|
$$

The limit as $j \rightarrow \infty$ of this is $|z|$, so the ratio test gives convergence if $|z|<1$.

Additional Problem 2.2:

Solution. The modulus of the ratio of the $j+1$ term to the j term is

$$
\left|\frac{\frac{z^{2(j+1)+1}}{2^{j+1+1}}}{\frac{z^{j+1}}{2^{j+1}}}\right|=\frac{1}{2}|z|^{2}
$$

This is constant in j, so the limit is $\frac{1}{2}|z|^{2}$, and the ratio test gives convergence if $\frac{1}{2}|z|^{2}<1$ or $|z|<\sqrt{2}$.

