Math 427, Autumn 2019, Homework 2 Solutions

Section 1.4: 3

Solution. The powers take the form $e^{\frac{i n \pi}{8}}$, for n an integer. We have

$$
e^{\frac{i n \pi}{8}}=e^{\frac{i m \pi}{8}} \quad \Leftrightarrow \quad \frac{n \pi}{8}-\frac{m \pi}{8}=2 \pi k
$$

for some integer k. This happens if $m=n+16 k$ for some integer k. So considering $n=0, \ldots, 15$ gives all possible distinct powers, since every number has a unique representation as $n+16 k$ for integers k and n with $0 \leq n \leq 15$.

Section 1.4: 8
Solution. Write $-9=9 e^{i \pi}$, which is the polar form. Then in polar form the cube roots are (where $9^{\frac{1}{3}}$ is the positive cube root)

$$
9^{\frac{1}{3}} e^{i \pi / 3}, 9^{\frac{1}{3}} e^{i \pi}, 9^{\frac{1}{3}} e^{i 5 \pi / 3} .
$$

Using $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}, \quad \sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$, we can write these as

$$
\frac{9^{\frac{1}{3}}}{2}+i \frac{9^{\frac{1}{3}} \sqrt{3}}{2}, \quad-9^{\frac{1}{3}}, \quad \frac{9^{\frac{1}{3}}}{2}-i \frac{9^{\frac{1}{3}} \sqrt{3}}{2} .
$$

Section 1.4: 15
Solution. Let $\log (z)=\log |z|+i \arg _{(-\pi, \pi]}(z)$ be the principal branch.

$$
z^{i}=e^{i \log (z)}=e^{i \log |z|} e^{-\arg _{(-\pi, \pi]}(z)}
$$

The term $e^{i \log |z|}$ is continuous on $\mathbb{C} \backslash\{0\}$, but the term $e^{-\arg _{(-\pi, \pi]}(z)}$ jumps as z crosses the negative real axis. Precisely, if z is on the negative real axis, say $z=-x$ where $x>0$, then $\arg _{(-\pi, \pi]}(z)=\pi$, and

$$
(-x)^{i}=e^{i \log (x)} e^{-\pi}
$$

If we approach $-x$ by z from below, then $\arg _{(-\pi, \pi]}(z)$ approaches $-\pi$, and the limit from below would be $e^{i \log (x)} e^{\pi}$.

Section 1.4: 16

Solution. Since the principal branch of $\sqrt{ } \cdot$ is continuous on $\mathbb{C} \backslash(-\infty, 0]$, the function $\sqrt{1-z^{2}}$ is continuous on the set $1-z^{2} \notin(-\infty, 0]$. This is the same as $z^{2} \notin[1, \infty)$, which is the same as $z \notin(-\infty,-1] \cup[1, \infty)$. So, the branch is continuous on $\mathbb{C} \backslash\{(-\infty,-1] \cup[1, \infty)\}$. On the other hand, the branch has a jump at each point in $(-\infty,-1) \cup(1, \infty)$. To see this for $z=x \in(1, \infty)$, note that $1-x^{2}$ is on the negative real axis, so the principal branch of $\sqrt{1-x^{2}}=i\left|1-x^{2}\right|^{\frac{1}{2}}$, that is, it lies on the positive imaginary axis.

We then consider taking $z=x+i y$ for $x>1$ and $y>0$ and letting y got to 0 . Then $1-z^{2}=1-x^{2}+y^{2}-i 2 x y$ has imaginary part less than 0 . So the principal branch of $\sqrt{ } \cdot$ assigns it a root near the negative imaginary axis. Precisely, $\lim _{y \rightarrow 0} \arg \left(1-x^{2}+y^{2}-i 2 x y\right)=-\pi$. So the principal branch of the square root gives

$$
\lim _{y \rightarrow 0} \sqrt{1-x^{2}+y^{2}-i 2 x y}=-i\left|1-x^{2}\right|^{\frac{1}{2}}
$$

Section 2.1: 4
Solution. Suppose $w \in A$. Letting $r=\operatorname{Re}(w)>0$, we will show that $D_{r}(w) \subset A$. If $|z-w|<r$, the $|\operatorname{Re}(z)-\operatorname{Re}(w)|<\operatorname{Re}(w)$, hence

$$
0<\operatorname{Re}(z)<2 \operatorname{Re}(w)
$$

which implies that $z \in A$.
Section 2.1: 5
Solution. (a) is open, (b) is neither open nor closed, (c) is closed.
Section 2.1: 7
Solution. We use Theorem 2.1.6(b). If every neighborhood of z contains a point of E, then we can choose $z_{n} \in D_{\frac{1}{n}}(z) \cap E$, that is $z_{n} \in E$ and $\left|z_{n}-z\right|<\frac{1}{n}$. Then $\left\{z_{n}\right\}$ is a sequence in E that converges to z. Conversely, if $\left\{z_{n}\right\}$ is a sequence in E that converges to z, then every neighborhood of z will contain some z_{n} (in fact infinitely many z_{n}), hence intersects E. This is because every neighborhood contains $D_{r}(z)$ for some $r>0$, but since $\left\{z_{n}\right\}$ converges to z we must have $\left|z_{n}-z\right|<r$ for $n>N$, for some N depending on r.

Section 2.1: 14
Solution. Use Theorem 2.1.13. The set of z such that $|f(z)|<r$ is the preimage under f of the open set $\{w:|w|<r\}$, hence is open, and $\operatorname{Re}(f(z))<r$ is the preimage under f of the open set $\{w: \operatorname{Re}(w)<r\}$.

Additional problem.

Solution. This is similar to Problem $1.4 \# 16$ above. The branch of the square root defined using $\arg _{(-\pi, \pi]}$ will be continuous on $\mathbb{C} \backslash(-\infty, 0]$. So $\sqrt{z^{2}+1}$ is continuous where $z^{2}+1 \notin(-\infty, 0]$ or $z^{2} \notin(-\infty,-1]$ or $z \notin(-i \infty,-i] \cup[i, i \infty)$. It has jumps at all points in $(-i \infty,-i) \cup(i, i \infty)$.

