Math 427, Autumn 2019, Homework 2 Solutions

Section 1.4: 3

Solution. The powers take the form $e^{\frac{in\pi}{8}}$, for n an integer. We have

$$e^{\frac{in\pi}{8}} = e^{\frac{im\pi}{8}} \quad \Leftrightarrow \quad \frac{n\pi}{8} - \frac{m\pi}{8} = 2\pi k$$

for some integer k. This happens if m = n + 16k for some integer k. So considering $n = 0, \ldots, 15$ gives all possible distinct powers, since every number has a unique representation as n + 16k for integers k and n with $0 \le n \le 15$.

Section 1.4: 8

Solution. Write $-9 = 9e^{i\pi}$, which is the polar form. Then in polar form the cube roots are (where $9^{\frac{1}{3}}$ is the positive cube root)

$$9^{\frac{1}{3}}e^{i\pi/3}$$
, $9^{\frac{1}{3}}e^{i\pi}$, $9^{\frac{1}{3}}e^{i5\pi/3}$.

Using $\cos(\frac{\pi}{3}) = \frac{1}{2}$, $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$, we can write these as

$$\frac{9^{\frac{1}{3}}}{2} + i \frac{9^{\frac{1}{3}}\sqrt{3}}{2}, \quad -9^{\frac{1}{3}}, \quad \frac{9^{\frac{1}{3}}}{2} - i \frac{9^{\frac{1}{3}}\sqrt{3}}{2}.$$

Section 1.4: 15

Solution. Let $\log(z) = \log|z| + i \arg_{(-\pi,\pi]}(z)$ be the principal branch.

$$z^{i} = e^{i\log(z)} = e^{i\log|z|} e^{-\arg(-\pi,\pi](z)}$$

The term $e^{i \log |z|}$ is continuous on $\mathbb{C}\setminus\{0\}$, but the term $e^{-\arg(-\pi,\pi](z)}$ jumps as z crosses the negative real axis. Precisely, if z is on the negative real axis, say z=-x where x>0, then $\arg_{(-\pi,\pi)}(z)=\pi$, and

$$(-x)^i = e^{i\log(x)}e^{-\pi}.$$

If we approach -x by z from below, then $\arg_{(-\pi,\pi]}(z)$ approaches $-\pi$, and the limit from below would be $e^{i\log(x)}e^{\pi}$.

Section 1.4: 16

Solution. Since the principal branch of $\sqrt{\cdot}$ is continuous on $\mathbb{C}\setminus(-\infty,0]$, the function $\sqrt{1-z^2}$ is continuous on the set $1-z^2\notin(-\infty,0]$. This is the same as $z^2\notin[1,\infty)$, which is the same as $z\notin(-\infty,-1]\cup[1,\infty)$. So, the branch is continuous on $\mathbb{C}\setminus\{(-\infty,-1]\cup[1,\infty)\}$. On the other hand, the branch has a jump at each point in $(-\infty,-1)\cup(1,\infty)$. To see this for $z=x\in(1,\infty)$, note that $1-x^2$ is on the negative real axis, so the principal branch of $\sqrt{1-x^2}=i|1-x^2|^{\frac{1}{2}}$, that is, it lies on the positive imaginary axis.

We then consider taking z = x + iy for x > 1 and y > 0 and letting y got to 0. Then $1 - z^2 = 1 - x^2 + y^2 - i2xy$ has imaginary part less than 0. So the principal branch of $\sqrt{\cdot}$ assigns it a root near the negative imaginary axis. Precisely, $\lim_{y\to 0} \arg(1-x^2+y^2-i2xy) = -\pi$. So the principal branch of the square root gives

$$\lim_{y \to 0} \sqrt{1 - x^2 + y^2 - i2xy} = -i|1 - x^2|^{\frac{1}{2}}.$$

Section 2.1: 4

Solution. Suppose $w \in A$. Letting r = Re(w) > 0, we will show that $D_r(w) \subset A$. If |z - w| < r, the |Re(z) - Re(w)| < Re(w), hence

$$0 < \operatorname{Re}(z) < 2\operatorname{Re}(w)$$

which implies that $z \in A$.

Section 2.1: 5

Solution. (a) is open, (b) is neither open nor closed, (c) is closed.

Section 2.1: 7

Solution. We use Theorem 2.1.6(b). If every neighborhood of z contains a point of E, then we can choose $z_n \in D_{\frac{1}{n}}(z) \cap E$, that is $z_n \in E$ and $|z_n - z| < \frac{1}{n}$. Then $\{z_n\}$ is a sequence in E that converges to z. Conversely, if $\{z_n\}$ is a sequence in E that converges to z, then every neighborhood of z will contain some z_n (in fact infinitely many z_n), hence intersects E. This is because every neighborhood contains $D_r(z)$ for some r > 0, but since $\{z_n\}$ converges to z we must have $|z_n - z| < r$ for n > N, for some N depending on r.

Section 2.1: 14

Solution. Use Theorem 2.1.13. The set of z such that |f(z)| < r is the preimage under f of the open set $\{w : |w| < r\}$, hence is open, and Re(f(z)) < r is the preimage under f of the open set $\{w : \text{Re}(w) < r\}$.

Additional problem.

Solution. This is similar to Problem 1.4 #16 above. The branch of the square root defined using $\arg_{(-\pi,\pi]}$ will be continuous on $\mathbb{C}\setminus(-\infty,0]$. So $\sqrt{z^2+1}$ is continuous where $z^2+1\notin(-\infty,0]$ or $z^2\notin(-\infty,-1]$ or $z\notin(-i\infty,-i]\cup[i,i\infty)$. It has jumps at all points in $(-i\infty,-i)\cup(i,i\infty)$.