Math 427, Autumn 2019, Homework 3 Solutions

Section 2.2: 8

Solution. The principal branch of $\log z$ is differentiable (as shown in lecture) on the set $\mathbb{C} \backslash(-\infty, 0]$; that is, the complement of the cut line, and $(\log z)^{\prime}=z^{-1}$. The function z is differentiable everywhere on \mathbb{C}, with derivative 1 , and is non zero on $\mathbb{C} \backslash\{0\}$. In particular it is non zero on the set $\mathbb{C} \backslash(-\infty, 0]$. Consequently the ratio $(\log z) / z$ is differentiable on $\mathbb{C} \backslash(-\infty, 0]$, and we can use the ratio rule to find its derivative there

$$
\left(\frac{\log z}{z}\right)^{\prime}=\frac{z^{-1} \cdot z-\log z}{z^{2}}=\frac{1-\log z}{z^{2}}
$$

Section 2.3: 5

Solution.

(a.) $\gamma(t)=z_{0}+r e^{i t}, \quad t \in[0,2 \pi]$.
(b.) $\gamma(t)=z_{0}+r e^{-i t}, \quad t \in[0,2 \pi]$.
(c.) $\gamma(t)=z_{0}+r e^{i t}, \quad t \in[0,6 \pi]$.

Section 2.3: 10
Solution. Let $\gamma(t)=3 e^{i t}, t \in[0,2 \pi]$, so $\gamma^{\prime}(t)=i 3 e^{i t}$.

$$
\begin{aligned}
\int_{\gamma} z^{-1} d z & =\int_{0}^{2 \pi}\left(3 e^{i t}\right)^{-1} i 3 e^{i t} d t=\int_{0}^{2 \pi} i d t=2 \pi i \\
\int_{\gamma} \bar{z} d z & =\int_{0}^{2 \pi} \overline{3 e^{i t}} i 3 e^{i t} d t=\int_{0}^{2 \pi} 9 i d t=18 \pi i
\end{aligned}
$$

Additional Problem 1:

(a). $\sin (x+i y)=\frac{e^{i(x+i y)}-e^{-i(x+i y)}}{2 i}=\frac{e^{-y} e^{i x}-e^{y} e^{-i x}}{2 i}$

$$
\begin{aligned}
&=\frac{e^{-y}(\cos x+}{}+i \sin x)-e^{y}(\cos x-i \sin x) \\
& 2 i
\end{aligned} \quad=\left(\frac{e^{y}+e^{-y}}{2}\right) \sin x+i\left(\frac{e^{y}-e^{-y}}{2}\right) \cos x .
$$

$$
u(x, y)=\sin x \cosh y, \quad v(x, y)=\cos x \sinh y
$$

(b). $\quad(x+i y)^{2}+(x-i y)^{2}=\left(x^{2}-y^{2}+2 i x y\right)+\left(x^{2}-y^{2}-2 i x y\right)=2 x^{2}-2 y^{2}$

$$
u(x, y)=2 x^{2}-2 y^{2}, \quad v(x, y)=0 .
$$

(c). $\quad(x+i y) e^{-x-i y}=(x+i y) e^{-x}(\cos y-i \sin y)$

$$
=e^{-x}(x \cos y+y \sin y)+i e^{-x}(y \cos y-x \sin y)
$$

$$
u(x, y)=e^{-x}(x \cos y+y \sin y), \quad v(x, y)=e^{-x}(y \cos y-x \sin y)
$$

(d).

$$
\begin{aligned}
& |x+i y|^{2}=x^{2}+y^{2} \\
& u(x, y)=x^{2}+y^{2}, \quad v(x, y)=0 .
\end{aligned}
$$

Additional Problem 2:

(a.) Yes: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=\cos x \cosh y, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=-\sin x \sinh y$.
(b.) No: $\quad \frac{\partial u}{\partial x}=4 x, \quad \frac{\partial v}{\partial y}=0$
(c.) Yes:

$$
\begin{gathered}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=e^{-x}(-x \cos y-y \sin y+\cos y) \\
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=e^{-x}(-y \cos y+x \sin y-\sin y)
\end{gathered}
$$

(d.) No: $\quad \frac{\partial u}{\partial x}=2 x, \quad \frac{\partial v}{\partial y}=0$

Additional Problem 3: Where $\log z$ is differentiable we differentiate both sides of the identity $e^{\log z}=z$ to get $e^{\log z} \cdot(\log z)^{\prime}=1$ which, setting $e^{\log z}=z$ again, gives $z(\log z)^{\prime}=1$. So, wherever the branch of $\log z$ is differentiable, we must have $(\log z)^{\prime}=1 / z$.

