Math 427, Autumn 2019, Homework 3 Solutions

Section 2.2: 8

Solution. The principal branch of $\log z$ is differentiable (as shown in lecture) on the set $\mathbb{C}\setminus(-\infty, 0]$; that is, the complement of the cut line, and $(\log z)' = z^{-1}$. The function z is differentiable everywhere on \mathbb{C} , with derivative 1, and is non zero on $\mathbb{C}\setminus\{0\}$. In particular it is non zero on the set $\mathbb{C}\setminus(-\infty, 0]$. Consequently the ratio $(\log z)/z$ is differentiable on $\mathbb{C}\setminus(-\infty, 0]$, and we can use the ratio rule to find its derivative there

$$\left(\frac{\log z}{z}\right)' = \frac{z^{-1} \cdot z - \log z}{z^2} = \frac{1 - \log z}{z^2}$$

Section 2.3: 5 Solution.

(a.) $\gamma(t) = z_0 + re^{it}, t \in [0, 2\pi].$ (b.) $\gamma(t) = z_0 + re^{-it}, t \in [0, 2\pi].$ (c.) $\gamma(t) = z_0 + re^{it}, t \in [0, 6\pi].$

Section 2.3: 10 Solution. Let $\gamma(t) = 3e^{it}$, $t \in [0, 2\pi]$, so $\gamma'(t) = i3e^{it}$. $\int_{\gamma} z^{-1} dz = \int_{0}^{2\pi} (3e^{it})^{-1} i3e^{it} dt = \int_{0}^{2\pi} i dt = 2\pi i$. $\int_{\gamma} \overline{z} dz = \int_{0}^{2\pi} \overline{3e^{it}} i3e^{it} dt = \int_{0}^{2\pi} 9i dt = 18\pi i$.

Additional Problem 1:

(a).
$$\sin(x+iy) = \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} = \frac{e^{-y}e^{ix} - e^{y}e^{-ix}}{2i}$$
$$= \frac{e^{-y}(\cos x + i\sin x) - e^{y}(\cos x - i\sin x)}{2i}$$
$$= \left(\frac{e^{y} + e^{-y}}{2}\right)\sin x + i\left(\frac{e^{y} - e^{-y}}{2}\right)\cos x$$

$$u(x,y) = \sin x \cosh y$$
, $v(x,y) = \cos x \sinh y$.

(b).
$$(x+iy)^2 + (x-iy)^2 = (x^2 - y^2 + 2ixy) + (x^2 - y^2 - 2ixy) = 2x^2 - 2y^2$$

 $u(x,y) = 2x^2 - 2y^2$, $v(x,y) = 0$.

(c).
$$(x+iy)e^{-x-iy} = (x+iy)e^{-x}(\cos y - i\sin y)$$

= $e^{-x}(x\cos y + y\sin y) + ie^{-x}(y\cos y - x\sin y)$

$$u(x,y) = e^{-x}(x\cos y + y\sin y), \qquad v(x,y) = e^{-x}(y\cos y - x\sin y)$$

(d).
$$|x+iy|^2 = x^2 + y^2$$

$$u(x, y) = x^2 + y^2$$
, $v(x, y) = 0$.

Additional Problem 2:

(a.) Yes:
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \cos x \cosh y$$
, $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -\sin x \sinh y$.
(b.) No: $\frac{\partial u}{\partial x} = 4x$, $\frac{\partial v}{\partial y} = 0$
(c.) Yes:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = e^{-x}(-x\cos y - y\sin y + \cos y)$$
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = e^{-x}(-y\cos y + x\sin y - \sin y)$$
$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} = e^{-x}(-y\cos y + x\sin y - \sin y)$$

(d.) No:
$$\frac{\partial u}{\partial x} = 2x$$
, $\frac{\partial v}{\partial y} = 0$

Additional Problem 3: Where $\log z$ is differentiable we differentiate both sides of the identity $e^{\log z} = z$ to get $e^{\log z} \cdot (\log z)' = 1$ which, setting $e^{\log z} = z$ again, gives $z(\log z)' = 1$. So, wherever the branch of $\log z$ is differentiable, we must have $(\log z)' = 1/z$.