Math 427, Autumn 2019, Homework 4 Solutions

Section 2.4: 2

Solution. We get the same answer for any parameterization of the path, so we choose the most convenient one $\gamma(t)=e^{i t}, t \in[0,4 \pi]$. Then

$$
\int_{\gamma} \frac{1}{z} d z=\int_{0}^{4 \pi} \frac{i e^{i t}}{e^{i t}} d t=\int_{0}^{4 \pi} i d t=4 \pi i
$$

Section 2.4: 8
Solution. We first show that $|\cos z| \leq e$ in $|z|=1$, as follows:

$$
|\cos z|=\left|\frac{e^{i z}+e^{-i z}}{2}\right| \leq \frac{\left|e^{i z}\right|+\left|e^{-i z}\right|}{2}=\frac{e^{-y}+e^{y}}{2} \leq e \text { if }|z| \leq 1 .
$$

When $|z|=1$, this gives $\left|\frac{\cos z}{z}\right|=\frac{|\cos z|}{|z|} \leq \frac{e}{1}=e$.
We now apply Theorem 2.4.9, and the fact that $\ell\left(\partial D_{1}(0)\right)=2 \pi$, to prove the estimate.

Section 2.4: 10
Solution. Let $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$. Then

$$
\int_{\gamma} p(z) d z=\int_{0}^{2 \pi} \sum_{k=0}^{n} a_{k}\left(e^{i t}\right)^{k} i e^{i t} d t=i \sum_{k=0}^{n} a_{k} \int_{0}^{2 \pi} e^{i(k+1) t} d t
$$

Since $k+1>0$, we have

$$
\int_{0}^{2 \pi} e^{i(k+1) t} d t=\left.\frac{1}{i(k+1)} e^{i(k+1) t}\right|_{0} ^{2 \pi}=\frac{1}{i(k+1)}\left(e^{i(k+1) 2 \pi}-1\right)=0
$$

Section 2.6: 2
Solution. The function $\left(z^{2}-4\right)^{-1}$ is analytic on $\mathbb{C} \backslash\{-2,2\}$, in particular it is analytic on the convex set $\{z:|z|<2\}$. Since γ is a closed path contained in the set $\{z:|z|<2\}$, then

$$
\int_{\gamma}\left(z^{2}-4\right)^{-1} d z=0
$$

Section 2.6: 5
Solution. $1 / z^{2}$ has an anti-derivative on $\mathbb{C} \backslash\{0\}: \frac{1}{z^{2}}=\left(-\frac{1}{z}\right)^{\prime}$.
So for any path closed path γ in $\mathbb{C} \backslash\{0\}$:

$$
\int_{\gamma} \frac{1}{z^{2}} d z=-\left.\frac{1}{z}\right|_{\gamma(a)} ^{\gamma(b)}=0, \quad \text { since } \quad \gamma(b)=\gamma(a)
$$

