Math 427, Autumn 2019, Homework 6 Solutions

Section 3.2: 1

Solution. The power series expansion of $(1-z)^{-1}$ about 0 is the geometric series:

$$
(1-z)^{-1}=\sum_{k=0}^{\infty} z^{k}
$$

which converges for $|z|<1$. Since $(1-z)^{-2}$ is the derivative of $(1-z)^{-1}$, and we can differentiate power series term by term, we have

$$
(1-z)^{-2}=\sum_{k=1}^{\infty} k z^{k-1}=\sum_{k=0}^{\infty}(k+1) z^{k}
$$

Section 3.2: 9
Solution. We did this in Lecture 24.

Section 3.2: 10

Solution. Suppose $0<r<R$. Then f is analytic on an open set containing the closed disc $D_{r}\left(z_{0}\right)$. We can apply Cauchy's estimates to see $\left|f^{\prime}\left(z_{0}\right)\right| \leq M / r$. This is true for every $r<R$, so we must have $\left|f^{\prime}\left(z_{0}\right)\right| \leq M / R$ by taking limits, for example.

Section 3.3: 2

Solution. We have that $\lim _{z \rightarrow \infty} 1 / f(z)=0$ if for all $\epsilon>0$ there is M such that $|1 / f(z)|<\epsilon$ if $|z|>M$. This is equivalent to the statement: for all $\epsilon>0$ there is M such that $|f(z)|>1 / \epsilon$ if $|z|>M$, and letting $\epsilon=1 / K$ (assuming $K \neq 0$, or take $\epsilon=1$ if $K=0$): for all K there is M such that $|f(z)|>K$ if $|z|>M$.

Section 3.3: 3

Solution. Supose by contradiction that $f(z) \neq 0$ for every $z \in C$ and $\lim _{z \rightarrow \infty} f(z)=\infty$. Let $g(z)=1 / f(z)$. Then $g(z)$ is entire, and $\lim _{z \rightarrow \infty} g(z)=0$. By Liouville's theorem $g(z)$ is constant, and the constant must be 0 since the limit at ∞ is 0 .

Section 3.3: 4
Solution. Suppose that $|f(z)| \geq 1$ for all $z \in \mathbb{C}$. Then the function $f(z)^{-1}$ is an entire function, since $f(z) \neq 0$ for all z, and we have $\left|f(z)^{-1}\right|=|f(z)|^{-1} \leq 1$ for all z. By Liouville's Theorem, $f(z)^{-1}$ is constant, so $f(z)$ is constant.

Section 3.4: 3

Solution. The first answer is no. If $f(z)$ is analytic on \mathbb{C}, and $f\left(\frac{1}{n}\right)=0$ for all integers $n \geq 1$, then $f(0)=0$. If f is not identically zero, this would contradict Theorem 3.4.2 (b), since any neighborhood of 0 contains points of the form $\frac{1}{n}$. Alternatively, one can apply Theorem 3.4.4 and use that $f(z)$ equals the 0 function a non-discrete set.

For the second part, there is a non-zero function on $\mathbb{C} \backslash\{0\}$ which has a zero at $z=\frac{1}{n}$ for every $n \geq 1$. For example, $\sin (\pi / z)$.

Section 3.4: 4

Solution. Write

$$
\sin (z)-z=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k+1}=-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}-\cdots
$$

Then we see that $\sin (z)-z$ has a zero of order 3 , and

$$
\sin (z)-z=z^{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} z^{2 k-2}=z^{3}\left(-\frac{1}{3!}+\frac{1}{5!} z^{2}-\frac{1}{7!} z^{4}+\cdots\right)
$$

Additional problem 1.

Solution. The function $\tan (z)$ is odd: $\tan (-z)=-\tan z$. So if we expand

$$
\tan z=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

then

$$
\tan (-z)=\sum_{k=0}^{\infty} a_{k}(-z)^{k}=\sum_{k=0}^{\infty}(-1)^{k} a_{k} z^{k}
$$

This must equal

$$
-\tan (z)=\sum_{k=0}^{\infty}\left(-a_{k}\right) z^{k}
$$

So $-a_{k}=(-1)^{k} a_{k}$. If k is even then $-a_{k}=a_{k}$, so $a_{k}=0$.

Additional problem 2.

Solution. Differentiate $\tan z=\frac{\sin z}{\cos z}$ to find

$$
a_{1}=(\tan z)^{\prime}(0)=1, \quad a_{3}=\frac{1}{3!}(\tan z)^{\prime \prime \prime}(0)=\frac{1}{3!} \cdot 2=\frac{1}{3} .
$$

