
Math 427, Autumn 2019, Homework 6 Solutions

Section 3.2: 1

Solution. The power series expansion of (1 − z)−1 about 0 is the
geometric series:

(1− z)−1 =
∞∑
k=0

zk

which converges for |z| < 1. Since (1−z)−2 is the derivative of (1−z)−1,
and we can differentiate power series term by term, we have

(1− z)−2 =
∞∑
k=1

k zk−1 =
∞∑
k=0

(k + 1) zk

Section 3.2: 9

Solution. We did this in Lecture 24.

Section 3.2: 10

Solution. Suppose 0 < r < R. Then f is analytic on an open set
containing the closed disc Dr(z0). We can apply Cauchy’s estimates
to see |f ′(z0)| ≤ M/r. This is true for every r < R, so we must have
|f ′(z0)| ≤M/R by taking limits, for example.

Section 3.3: 2

Solution. We have that limz→∞ 1/f(z) = 0 if for all ε > 0 there is M
such that |1/f(z)| < ε if |z| > M . This is equivalent to the statement:
for all ε > 0 there is M such that |f(z)| > 1/ε if |z| > M , and letting
ε = 1/K (assuming K 6= 0, or take ε = 1 if K = 0): for all K there is
M such that |f(z)| > K if |z| > M .

Section 3.3: 3

Solution. Supose by contradiction that f(z) 6= 0 for every z ∈ C
and limz→∞ f(z) = ∞. Let g(z) = 1/f(z). Then g(z) is entire, and
limz→∞ g(z) = 0. By Liouville’s theorem g(z) is constant, and the
constant must be 0 since the limit at ∞ is 0.

Section 3.3: 4

Solution. Suppose that |f(z)| ≥ 1 for all z ∈ C. Then the function
f(z)−1 is an entire function, since f(z) 6= 0 for all z, and we have

|f(z)−1| = |f(z)|−1 ≤ 1 for all z. By Liouville’s Theorem, f(z)−1 is

constant, so f(z) is constant.



Section 3.4: 3

Solution. The first answer is no. If f(z) is analytic on C, and f( 1
n
) = 0

for all integers n ≥ 1, then f(0) = 0. If f is not identically zero,
this would contradict Theorem 3.4.2 (b), since any neighborhood of 0
contains points of the form 1

n
. Alternatively, one can apply Theorem

3.4.4 and use that f(z) equals the 0 function a non-discrete set.
For the second part, there is a non-zero function on C\{0} which has
a zero at z = 1

n
for every n ≥ 1. For example, sin(π/z).

Section 3.4: 4

Solution. Write

sin(z)− z =
∞∑
k=1

(−1)k

(2k + 1)!
z2k+1 = − 1

3!
z3 +

1

5!
z5 − · · ·

Then we see that sin(z)− z has a zero of order 3, and

sin(z)− z = z3
∞∑
k=1

(−1)k

(2k + 1)!
z2k−2 = z3

(
− 1

3!
+

1

5!
z2 − 1

7!
z4 + · · ·

)

Additional problem 1.

Solution. The function tan(z) is odd: tan(−z) = − tan z. So if we
expand

tan z =
∞∑
k=0

ak z
k

then

tan(−z) =
∞∑
k=0

ak (−z)k =
∞∑
k=0

(−1)kak z
k.

This must equal

− tan(z) =
∞∑
k=0

(−ak) zk.

So −ak = (−1)kak. If k is even then −ak = ak, so ak = 0.

Additional problem 2.

Solution. Differentiate tan z =
sin z

cos z
to find

a1 = (tan z)′(0) = 1, a3 =
1

3!
(tan z)′′′(0) =

1

3!
· 2 =

1

3
.


