Section 3.4: 12, 13, 14, 15, 16

Additional problems:

1. Find the partial fraction decomposition of $\left(z^{3}-1\right)^{-1}$; that is, find $a, b, c$ so that

$$
\frac{1}{z^{3}-1}=\frac{a}{z-1}+\frac{b}{z-e^{2 \pi i / 3}}+\frac{c}{z-e^{4 \pi i / 3}}
$$

2. Suppose that $f(z)$ has a pole of order 2 at $z_{0}$. Show that $a_{-2}$ in the expansion $f(z)=\sum_{k=-2}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ can be obtained by

$$
a_{-2}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{2} f(z)
$$

Use this to find $a_{-2}$ at $z_{0}=0$ for $f(z)=(1-\cos z)^{-1}$.

