Math 427, Autumn 2019, Homework 7 Solutions

Section 3.4: 12

Solution. We factor

$$
\frac{1}{z-z^{3}}=(-1) \frac{1}{z} \frac{1}{z-1} \frac{1}{z+1}
$$

There are simple poles (i.e poles of order 1) at $z=0,1,-1$.

Section 3.4: 13

Solution. $\sin (1 / z)$ has an isolated singularity at $z=0$, which is an essential singularity. One can see that it is essential since $\lim _{z \rightarrow 0} \sin (1 / z)$ does not exist. (Consider z real, for example, to see this.)

Section 3.4: 14

Solution.

$$
\frac{e^{z}-z-1}{z^{2}}=\frac{\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots}{z^{2}}=\frac{1}{2!}+\frac{1}{3!} z+\cdots
$$

So the singularity is removable, and $f(0)=\frac{1}{2!}=\frac{1}{2}$.

Section 3.4: 15

Solution. This one is more complicated. The function $\frac{1}{z}$ has a simple pole at $z=0$. The function $\frac{1}{e^{z}-1}$ has simple poles at $z=k 2 \pi i$, for $k=0, \pm 1, \pm 2, \ldots$, since $e^{z}-1$ has zeroes of order 1 at those points. From this, we can see that the difference $\frac{1}{e^{z}-1}-\frac{1}{z}$ has a simple pole at $z=k 2 \pi i$ for $k= \pm 1, \pm 2 \ldots$, since the factor $\frac{1}{z}$ is analytic at those points, so the principal part of the function at those points is the same as the principal part of $\frac{1}{e^{z}-1}$.
To see whether 0 is a pole or a removable singularity, we can write

$$
\frac{1}{e^{z}-1}-\frac{1}{z}=(-1) \frac{e^{z}-z-1}{z\left(e^{z}-1\right)}
$$

Both the numerator and denominator have zeroes of order 2 at $z=0$, so the fraction has a removable singularity. One could also use l'Hopital's rule to see that

$$
\lim _{z \rightarrow 0} \frac{e^{z}-z-1}{z\left(e^{z}-1\right)}=\frac{1}{2}
$$

and since the limit exists it is a removable singularity.

Section 3.4: 16

Solution. The function $\frac{\log z}{(z-1)^{2}}$ has domain $\mathbb{C} \backslash\{(-\infty, 0] \cup\{1\}\}$, and an isolated singularity at $z=1$. To find the nature of the singularity at $z=1$, we expand $\log z$ about $z=1$ in terms of its Taylor expansion:

$$
\begin{aligned}
\log (z) & =\log (1)+\log ^{\prime}(1)(z-1)+\frac{1}{2!} \log ^{\prime \prime}(z)(z-1)^{2}+\cdots \\
& =(z-1)-\frac{1}{2}(z-1)^{2}+\cdots
\end{aligned}
$$

Since this vanishes to first order, there is a pole of order 1 at $z=1$. One can find the principal part (though that is not part of the assigned problem):

$$
\frac{\log z}{(z-1)^{2}}=\frac{(z-1)-\frac{1}{2}(z-1)^{2}+\cdots}{(z-1)^{2}}=\frac{1}{z-1}-\frac{1}{2}+\cdots
$$

so the principal part is $\frac{1}{z-1}$.

Extra problem 1.

Solution. We factor $z^{3}-1=(z-1)\left(z-e^{2 \pi i / 3}\right)\left(z-e^{4 \pi i / 3}\right)$. We then equate

$$
\frac{1}{(z-1)\left(z-e^{2 \pi i / 3}\right)\left(z-e^{4 \pi i / 3}\right)}=\frac{a}{z-1}+\frac{b}{z-e^{2 \pi i / 3}}+\frac{c}{z-e^{4 \pi i / 3}}
$$

By plugging in roots, or comparing principal parts, we see that

$$
\begin{array}{r}
a=\frac{1}{\left(1-e^{2 \pi i / 3}\right)\left(1-e^{4 \pi i / 3}\right)}, \quad b=\frac{1}{\left(e^{2 \pi i / 3}-1\right)\left(e^{2 \pi i / 3}-e^{4 \pi i / 3}\right)}, \\
\quad c=\frac{1}{\left(e^{4 \pi i / 3}-1\right)\left(e^{4 \pi i / 3}-e^{2 \pi i / 3}\right)}
\end{array}
$$

Extra problem 2.

Solution. When $f(z)=\sum_{k=-2}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ we can write

$$
\left(z-z_{0}\right)^{2} f(z)=\sum_{k=0}^{\infty} a_{k-2}\left(z-z_{0}\right)^{k}
$$

The right hand side is a convergent power series, so it is analytic, and in particular continuous. So we can calculate the limit by evaluating the series at $z=z_{0}$:

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{2} f(z)=a_{-2}
$$

