Name:

Student #:

Math 427 Midterm, Autumn 2016

Answer problems on the pages I handed out.

Staple together the pages you want considered, in order, with this page on top.

- 1. For each of the following sets, say whether the set is: **open**, **closed**, **convex**. (That is, each item will have 3 yes/no answers). There is no need to justify your answers.
 - (a.) The set of $z \in \mathbb{C}$ such that Re(z) = 0 and 0 < Im(z) < 1.
 - (b.) The set of $z \in \mathbb{C}$ such that |z 1| = 1.
 - (c.) The set of z such that $Im(z) > Re(z)^2$.
- **2.** Use the Cauchy–Riemann equations to determine if each of the following functions is analytic. If it is, find f'(x+iy) (you may leave the answer in the u(x,y)+iv(x,y) form).
 - (a.) $f(x+iy) = x^2 y^2 + x + i(2xy y)$
 - (b.) $f(x+iy) = e^y \cos x i e^y \sin x$
- **3.** Find $\int_{\gamma} f(z) dz$, where $\gamma(t) = 1 + t + it$, $t \in [0,1]$, that is, $\gamma = [1, 2 + i]$, for

the following functions. You may use any methods we learned to evaluate path integrals.

- (a.) $f(z) = z^2$
- (b.) $f(z) = |z|^2$

4.

- (a.) Find all complex numbers z such that $z^3 = 1 i$. Express the answers in the form x + iy (i.e. don't leave them in polar form). The answers for x and y can be given using sin and cos functions.
- (b.) Let 0 < r < R be real numbers. Describe the set of $z \in \mathbb{C}$ such that $r < |e^z| < R$.
- (c.) Describe the image f(E) where E is the set $\{z \in \mathbb{C} : \text{Im}(z) > 0 \text{ and } \text{Re}(z) > 0\}$, and $f(z) = z^3$. As part of your answer, sketch the image in the complex plane. Indicate whether any boundary lines are included or not in the image.
- **5.** Express the following functions in the form f(x+iy) = u(x,y) + iv(x,y) for real-valued functions u and v. That is, give explicit formulas for u(x,y) and v(x,y).
 - (a.) $f(z) = z \log z$, on the set Re(z) > 0, where $\log z$ is the principal branch.
 - (b.) $f(z) = \frac{e^z}{z}$, on the set $z \neq 0$.