Lecture 1: Schwarz's Lemma

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Assume that:
$$f(z)$$
 is analytic on $D_1(0) = \{z : |z| < 1\}$, and continuous on $\overline{D_1}(0) = \{z : |z| \le 1\}$.

By the Maximum Modulus Theorem:

- If $|f(z)| \le 1$ when |z| = 1, then $|f(z)| \le 1$ when $|z| \le 1$,
- |f(z)| < 1 when |z| < 1 unless f(z) is constant.

Example: the function
$$f(z) = \frac{z + \frac{1}{2}}{\frac{1}{2}z + 1}$$

If |z| = 1, then $z\overline{z} = 1$, so:

$$|f(z)| = \left| \frac{z + \frac{1}{2}}{\frac{1}{2}z + z\overline{z}} \right| = \frac{1}{|z|} \left| \frac{z + \frac{1}{2}}{\frac{1}{2} + \overline{z}} \right| = 1$$

Therefore: |f(z)| < 1 if |z| < 1, |f(z)| = 1 if |z| = 1.

Theorem: assume f analytic on $D_1(0)$, continuous on $\overline{D_1}(0)$.

Suppose that |f(z)| = 1 when |z| = 1. If f(z) is not constant, then there is some point $z \in D_1(0)$ where f(z) = 0.

Proof. By Maximum Modulus, |f(z)| < 1 when |z| < 1.

- If $f(z) \neq 0$ on $D_1(0)$, then 1/f(z) is analytic, continuous.
- By assumption, |1/f(z)| = 1/|f(z)| = 1 if |z| = 1.
- Max Mod implies 1/|f(z)| < 1 if |z| < 1, a contradiction.

Stronger fact: if |w| < 1, then w = f(z) for some |z| < 1.

Typical such map: $f(z) = z^n$, $n \ge 1$.

Schwarz's Lemma

Assume that f(z) is analytic on $D_1(0)$, and $|f(z)| \le 1$ for |z| < 1. If f(0) = 0, then $|f(z)| \le |z|$ for all |z| < 1, and $|f'(0)| \le 1$. If |f'(0)| = 1, or |f(z)| = |z| some z, then f(z) = cz, |c| = 1.

Proof. The function
$$g(z) = \begin{cases} f(z)/z, & 0 < |z| < 1, \\ f'(0), & z = 0, \end{cases}$$

is analytic on $D_1(0)$. For every r < 1:

if
$$|z| = r$$
: $|g(z)| = |f(z)|/|z| \le 1/r$.

By Max Mod: $|g(z)| \le r^{-1}$ if |z| < r. This holds for all r < 1, so

$$|g(z)| \le 1$$
 if $|z| < 1$.

If
$$|g(z)|=1$$
 for some $|z|<1$, i.e. $|f'(0)|=1$ or $|f(z)|=|z|$, by Max Mod $g(z)=c$, so $f(z)=cz$.

Bi-analytic maps of $D_1(0)$

Theorem

Assume f(z) is a 1-1 map of $D_1(0)$ onto $D_1(0)$, and f and f^{-1} are analytic functions. If f(0) = 0, then f(z) = cz, with |c| = 1.

Proof. Schwarz's lemma applies to both f(z) and $f^{-1}(z)$:

- f(0) = 0 so $|f'(0)| \le 1$, and $f^{-1}(0) = 0$ so $|(f^{-1})'(0)| \le 1$.
- Differentiate $f(f^{-1}(z)) = z$: by chain rule $f'(0)(f^{-1})'(0) = 1$.
- Conclude |f'(0)| = 1. By Schwarz, f(z) = cz with |c| = 1.

Result fails if f(z) is not 1-1. Example: $f(z) = z^2$