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Meromorphic functions

Definition
A function f is meromorphic on U if it is analytic on U except at
a discrete set of points {z;}, and each z; is a pole.

f(z)

e f, g meromorphicon U = ﬁ is meromorphic on U.
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Poles of —— can occur at: the poles of f and the zeroes of g.

9(2)

f'(2)
f(2)

e Poles of
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At a zero z; of order my; : Res(T, z,-) =m;
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At a pole wy of order ny : Res(? wk> = —Ng




Counting Zeroes and Poles

Theorem

Suppose f is meromorphic on E, " a cycle in E with indr(z) =0
for z ¢ E, and f has no zeroes or poles on I'. Let {z;} be the
zeroes of f, with respective orders m;, and {wx} the poles of f,
with respective orders n,. Then
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Proof. Follows by the Residue Theorem: the poles of )

coincide with the combined collection of zeroes and poles of f.



Example. Let f(z :
P (2) = z—1i zero of order 1 at z = —i.
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Example. Let f(z) =

zero of ordernat z = 0.
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/|Z|_1 7(2) dz = 27i(n—1)




Interpretation in terms of fo~

If vis a path in E, f analytic on E, can form image path fo~

(Fo)(t) = f(x(1)),  so  (foy)(t) = F'(x(1)'(1) ’

For any path ~:
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Theorem

Suppose f is meromorphic on E, " a cycle in E with indr(z) =0
for z ¢ E, and f has no zeroes or poles on I'. Let {z;} be the
zeroes of f, with respective orders m;, and {wy} the poles of f,
with respective orders n,. Then

<z indr(Zj) - m; — Z indr(Wk) o nk> = indfor(O)
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