Lecture 10: Counting Zeroes and Poles

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Meromorphic functions

Definition

A function *f* is meromorphic on *U* if it is analytic on *U* except at a discrete set of points $\{z_j\}$, and each z_j is a pole.

- f, g meromorphic on $U \Rightarrow \frac{f(z)}{g(z)}$ is meromorphic on U. Poles of $\frac{f(z)}{g(z)}$ can occur at: the poles of f and the zeroes of g.
- Poles of $\frac{f'(z)}{f(z)}$ do occur at: the poles of *f* and the zeroes of *f*,

At a zero
$$z_j$$
 of order m_j : $\operatorname{Res}\left(\frac{f'}{f}, z_j\right) = m_j$
At a pole w_k of order n_k : $\operatorname{Res}\left(\frac{f'}{f}, w_k\right) = -n_k$

Theorem

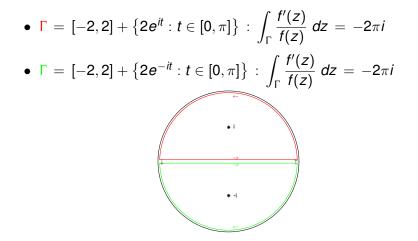
Suppose *f* is meromorphic on *E*, Γ a cycle in *E* with $\operatorname{ind}_{\Gamma}(z) = 0$ for $z \notin E$, and *f* has no zeroes or poles on Γ . Let $\{z_j\}$ be the zeroes of *f*, with respective orders m_j , and $\{w_k\}$ the poles of *f*, with respective orders n_k . Then

$$\int_{\Gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \left(\sum_{j} \operatorname{ind}_{\Gamma}(z_{j}) \cdot m_{j} - \sum_{k} \operatorname{ind}_{\Gamma}(w_{k}) \cdot n_{k} \right)$$

Proof. Follows by the Residue Theorem: the poles of $\frac{f'(z)}{f(z)}$ coincide with the combined collection of zeroes and poles of *f*.

Example. Let
$$f(z) = \frac{z+i}{z-i}$$
:
 $\begin{cases} \text{pole of order 1 at } z=i, \\ \text{zero of order 1 at } z=-i. \end{cases}$

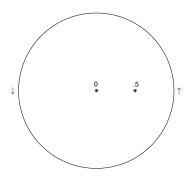
$$\int_{|z|=2}\frac{f'(z)}{f(z)}\,dz\,=\,0$$



Example. Let
$$f(z) = \frac{z^n}{z - \frac{1}{2}}$$
:

$$\begin{cases} \text{pole of order 1 at } z = \frac{1}{2}, \\ \text{zero of order n at } z = 0. \end{cases}$$

$$\int_{|z|=1} \frac{f'(z)}{f(z)} dz = 2\pi i (n-1)$$



Interpretation in terms of $f \circ \gamma$

If γ is a path in E, f analytic on E, can form image path $f \circ \gamma$

 $(f \circ \gamma)(t) = f(\gamma(t)),$ so $(f \circ \gamma)'(t) = f'(\gamma(t))\gamma'(t)$

For any path γ :

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz \stackrel{\text{def}}{=} \int_{a}^{b} \frac{f'(\gamma(t))}{f(\gamma(t))} \gamma'(t) dt = \int_{a}^{b} \frac{(f \circ \gamma)'(t)}{(f \circ \gamma)(t)} dt = \int_{f \circ \gamma} \frac{1}{z} dz$$

Theorem

Suppose *f* is meromorphic on *E*, Γ a cycle in *E* with $\operatorname{ind}_{\Gamma}(z) = 0$ for $z \notin E$, and *f* has no zeroes or poles on Γ . Let $\{z_j\}$ be the zeroes of *f*, with respective orders m_j , and $\{w_k\}$ the poles of *f*, with respective orders n_k . Then

$$\left(\sum_{j} \operatorname{ind}_{\Gamma}(z_{j}) \cdot m_{j} - \sum_{k} \operatorname{ind}_{\Gamma}(w_{k}) \cdot n_{k}\right) = \operatorname{ind}_{f \circ \Gamma}(0)$$

