Lecture 10: Counting Zeroes and Poles

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 428, Winter 2020

Meromorphic functions

Definition

A function f is meromorphic on U if it is analytic on U except at a discrete set of points $\left\{z_{j}\right\}$, and each z_{j} is a pole.

- f, g meromorphic on $U \Rightarrow \frac{f(z)}{g(z)}$ is meromorphic on U. Poles of $\frac{f(z)}{g(z)}$ can occur at: the poles of f and the zeroes of g.
- Poles of $\frac{f^{\prime}(z)}{f(z)}$ do occur at: the poles of f and the zeroes of f,

At a zero z_{j} of order $m_{j}: \operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{j}\right)=m_{j}$
At a pole w_{k} of order $n_{k}: \operatorname{Res}\left(\frac{f^{\prime}}{f}, w_{k}\right)=-n_{k}$

Counting Zeroes and Poles

Theorem

Suppose f is meromorphic on E, Γ a cycle in E with ind ${ }_{\Gamma}(z)=0$ for $z \notin E$, and f has no zeroes or poles on Γ. Let $\left\{z_{j}\right\}$ be the zeroes of f, with respective orders m_{j}, and $\left\{w_{k}\right\}$ the poles of f, with respective orders n_{k}. Then

$$
\int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i\left(\sum_{j} \operatorname{ind}_{\Gamma}\left(z_{j}\right) \cdot m_{j}-\sum_{k} \operatorname{ind}_{\Gamma}\left(w_{k}\right) \cdot n_{k}\right)
$$

Proof. Follows by the Residue Theorem: the poles of $\frac{f^{\prime}(z)}{f(z)}$ coincide with the combined collection of zeroes and poles of f.

Example. Let $f(z)=z+i:\{$ pole of order 1 at $z=i$,
Example. Let $f(z)=\frac{z+i}{z-i}:\left\{\begin{array}{l}\text { pole of order } 1 \text { at } z=i, \\ \text { zero of order } 1 \text { at } z=-i .\end{array}\right.$

$$
\int_{|z|=2} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

- $\Gamma=[-2,2]+\left\{2 e^{i t}: t \in[0, \pi]\right\}: \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=-2 \pi i$
- $\Gamma=[-2,2]+\left\{2 e^{-i t}: t \in[0, \pi]\right\}: \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=-2 \pi i$

Example. Let $f(z)=\frac{z^{n}}{z-\frac{1}{2}}:\left\{\begin{array}{l}\text { pole of order } 1 \text { at } z=\frac{1}{2}, \\ \text { zero of order } \mathrm{n} \text { at } z=0 .\end{array}\right.$

$$
\int_{|z|=1} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i(n-1)
$$

Interpretation in terms of $f \circ \gamma$

If γ is a path in E, f analytic on E, can form image path $f \circ \gamma$

$$
(f \circ \gamma)(t)=f(\gamma(t)), \quad \text { so } \quad(f \circ \gamma)^{\prime}(t)=f^{\prime}(\gamma(t)) \gamma^{\prime}(t)
$$

For any path γ :

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z \stackrel{\text { def }}{=} \int_{a}^{b} \frac{f^{\prime}(\gamma(t))}{f(\gamma(t))} \gamma^{\prime}(t) d t=\int_{a}^{b} \frac{(f \circ \gamma)^{\prime}(t)}{(f \circ \gamma)(t)} d t=\int_{f \circ \gamma} \frac{1}{z} d z
$$

Theorem

Suppose f is meromorphic on E, Γ a cycle in E with ind ${ }_{\Gamma}(z)=0$ for $z \notin E$, and f has no zeroes or poles on Γ. Let $\left\{z_{j}\right\}$ be the zeroes of f, with respective orders m_{j}, and $\left\{w_{k}\right\}$ the poles of f, with respective orders n_{k}. Then

$$
\left(\sum_{j} \operatorname{ind}_{\Gamma}\left(z_{j}\right) \cdot m_{j}-\sum_{k} \operatorname{ind}_{\Gamma}\left(w_{k}\right) \cdot n_{k}\right)=\operatorname{ind}_{f \circ \Gamma}(0)
$$

$$
f(z)=\frac{z+i}{z-i}
$$

Image $f \circ \gamma$

