Lecture 11: Rouche's Theorem

Hart Smith

Department of Mathematics University of Washington, Seattle

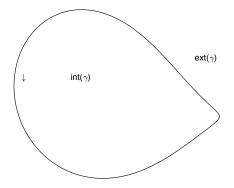
Math 428, Winter 2020

Notation and Definitions

 A simple path is a closed path γ such that C \ {γ} has exactly 2 components, which we call int(γ) and ext(γ),

such that:
$$\operatorname{ind}_{\gamma}(z) = \begin{cases} 1, & z \in \operatorname{int}(\gamma) \\ 0, & z \in \operatorname{ext}(\gamma) \end{cases}$$

• Then: $\operatorname{ind}_{\gamma}(z) = 0$ for $z \notin E \Leftrightarrow \operatorname{int}(\gamma) \subset E$.



Theorem

For *h* meromorphic on *E*, γ a simple path in *E* with $int(\gamma) \subset E$, and *h* has no zeroes or poles on γ : If the zeroes of *h* inside γ occur at $\{z_j\}$ with order m_j , and the poles inside γ occur at $\{w_k\}$ with order n_k , then: $ind_{h \circ \gamma}(0) = \sum_j m_j - \sum_k n_k$.

 $h \circ \gamma$:

Example.

$$h(z) = \frac{z}{(z - \frac{1}{2})(z - 1)^2}$$
$$\gamma = \partial D_2(0)$$

Observation: If *f*, *g* are **analytic** on $E \supset int(\gamma)$ and $h = \frac{r}{g}$,

 $\#\{\text{zeroes of } f \text{ inside } \gamma\} - \#\{\text{zeroes of } g \text{ inside } \gamma\}$

= #{zeroes of *h* inside γ } - #{poles of *h* inside γ }

where # counts the orders of the zeroes (and poles).

Combined with the previous Theorem, this gives:

Theorem

If f, g are analytic on E, γ a simple path in E with $int(\gamma) \subset E$, and f, g have no zeroes on γ , then if we let $h = \frac{f}{g}$,

 $\operatorname{ind}_{h\circ\gamma}(0) = \#\{\operatorname{zeroes of} f \text{ in } \gamma\} - \#\{\operatorname{zeroes of} g \text{ in } \gamma\}.$

Rouche's Theorem

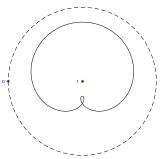
If *f*, *g* are analytic on *E*, γ a simple path in *E* with $int(\gamma) \subset E$, *f*, *g* have no zeroes on γ , and $\left|\frac{f(z)}{g(z)} - 1\right| \leq 1$ for all $z \in \{\gamma\}$,

then: $\#\{\text{zeroes of } f \text{ in } \gamma\} = \#\{\text{zeroes of } g \text{ in } \gamma\}.$

Proof. Let
$$h(z) = \frac{f(z)}{g(z)}$$
, so $|h(\gamma(t)) - 1| \le 1$, and $h(\gamma(t)) \ne 0$.

This means $\{h \circ \gamma\} \subset \overline{D_1}(1) \setminus \{0\}$, and thus $ind(h \circ \gamma)(0) = 0$.

$$f(z) = z^4 - .5z^3 - .3iz^2$$
$$g(z) = z^4$$
$$\gamma = \partial D_1(0)$$



Examples

•
$$f(z) = \frac{1}{6}z^4 - \frac{1}{2}z^2 + z, \qquad g(z) = z, \qquad \gamma = \partial D_1(0)$$

- $f(z) = \frac{1}{6}z^4 \frac{1}{2}z^2 + z, \qquad g(z) = \frac{1}{6}z^4, \qquad \gamma = \partial D_3(0)$
- $f(z) = 3e^z z$, $g(z) = 3e^z$, $\gamma = \partial D_1(0)$
- $f(z) = e^z 3z$, g(z) = -3z, $\gamma = \partial D_1(0)$
- $f(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0, \qquad g(z) = z^n,$

 $\gamma = \partial D_R(0)$ where $R > |a_{n-1}| + \cdots + |a_0|$ and R > 1.

An *n*-th order polynomial has exactly *n* zeroes (incl. multiplicity).