Lecture 12: The Inverse Function Theorem

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 428, Winter 2020

Rouche's Theorem

If f, g are analytic on E, γ a simple path in E with $\operatorname{int}(\gamma) \subset E$, f, g have no zeroes on γ, and $\left|\frac{f(z)}{g(z)}-1\right| \leq 1$ for all $z \in\{\gamma\}$, then: $\quad \#\{$ zeroes of f in $\gamma\}=\#\{$ zeroes of g in $\gamma\}$.

Another way to state criterion on f and g :

$$
|f(z)-g(z)| \leq|g(z)| \quad \text { for all } \quad z \in\{\gamma\}
$$

Assume $f\left(z_{0}\right)=w_{0}$, and $f^{\prime}\left(z_{0}\right) \neq 0$. Then there exists $f^{-1}(w)$:

- $f\left(f^{-1}(w)\right)=w$ for $w \in D_{\delta}\left(w_{0}\right)$, some $\delta>0$.
- $f^{-1}\left(w_{0}\right)=z_{0} ; f^{-1}(w)$ is analytic on $D_{\delta}\left(w_{0}\right)$.
- $f^{-1}(w)^{\prime}=1 / f^{\prime}\left(f^{-1}(w)\right)$.

Existence of $f^{-1}(w)$:

- The function $f(z)-w_{0}$ has a zero of order 1 at $z=z_{0}$.
- Zeroes are isolated: $f(z)-w_{0}$ has unique zero in $\overline{D_{r}}\left(z_{0}\right)$ for some $r>0$, so

$$
\min _{\left|z-z_{0}\right|=r}\left|f(z)-w_{0}\right|=\delta>0
$$

- If $\left|w-w_{0}\right|<\delta$, then

$$
\left|(f(z)-w)-\left(f(z)-w_{0}\right)\right| \leq\left|f(z)-w_{0}\right| \text { for } z \in \partial D_{r}\left(z_{0}\right)
$$

so $f(z)-w$ has a unique zero in $D_{r}\left(z_{0}\right)$, which gives $f^{-1}(w)$.

Pictorial illustration behind existence of $f^{-1}(w)$

Let $f(z)=\tan z, z_{0}=0, w_{0}=0$. Then $\tan ^{\prime}\left(z_{0}\right)=1$.

$\partial D_{1}(0)=\left\{e^{i t}: t \in[0,2 \pi]\right\}$

Image of $\partial D_{1}(0)$ under tan z :
$\left\{\tan \left(e^{i t}\right): t \in[0,2 \pi]\right\}$

Analyticity of $f^{-1}(w)$ for $\left|w-w_{0}\right|<\delta$

Key fact: $f^{-1}(w)$ is unique zero of $f(z)-w$ for $z \in D_{r}\left(z_{0}\right)$,

$$
\begin{aligned}
& \operatorname{Res}\left(\frac{f^{\prime}(z)}{f(z)-w}, f^{-1}(w)\right)=1 \\
& \quad \Rightarrow \quad \frac{f^{\prime}(z)}{f(z)-w}=\frac{1}{z-f^{-1}(w)}+\text { analytic }
\end{aligned}
$$

Explicit formula : $\quad f^{-1}(w)=\frac{1}{2 \pi i} \int_{\partial D_{r}\left(z_{0}\right)} \frac{z f^{\prime}(z)}{f(z)-w} d z$

This is analytic on $\left|w-w_{0}\right|<\delta$, and equals the power series

$$
f^{-1}(w)=\sum_{k=0}^{\infty} a_{k}\left(w-w_{0}\right)^{k}, \quad a_{k}=\frac{1}{2 \pi i} \int_{\partial D_{r}\left(z_{0}\right)} \frac{z f^{\prime}(z)}{\left.f(z)-w_{0}\right)^{k+1}} d z
$$

Example

Let $f(z)=\sin z$. Then $f^{\prime}(z)=\cos z \neq 0$ if $z \neq\left(k+\frac{1}{2}\right) \pi$.
Note: $\sin z= \pm 1 \Rightarrow \sin ^{\prime} z=0$; no analytic inverse at $w_{0}= \pm 1$.
For a local inverse, two values are possible for $\left(\sin ^{-1}\right)^{\prime}(w)$:

$$
\left(\sin ^{-1}\right)^{\prime}(w)=\frac{1}{\cos \left(\sin ^{-1}(w)\right)}=\frac{1}{\sqrt{1-w^{2}}}
$$

Take $z_{0}=0, w_{0}=\sin (0)=0$. Then for $|w|<\delta$: there is a choice of $\sin ^{-1}(w)$ with $\sin ^{-1}(0)=0$, and

$$
\left(\sin ^{-1}\right)^{\prime}(0)=\cos \left(\sin ^{-1}(0)\right)=\cos (0)=1
$$

Take $z_{0}=\pi, w_{0}=\sin (\pi)=0$. Then for $|w|<\delta$: there is a choice of $\sin ^{-1}(w)$ with $\sin ^{-1}(0)=\pi$, and

$$
\left(\sin ^{-1}\right)^{\prime}(0)=\cos \left(\sin ^{-1}(0)\right)=\cos (\pi)=-1 .
$$

