Lecture 13: Inverse Functions II

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 428, Winter 2020

Assume $f\left(z_{0}\right)=w_{0}$, and $f^{\prime}\left(z_{0}\right) \neq 0$. Then there exists $f^{-1}(w)$:

- The function $f^{-1}(w)$ is analytic on $D_{\delta}\left(w_{0}\right)$, some $\delta>0$.
- $f\left(f^{-1}(w)\right)=w$ for $w \in D_{\delta}\left(w_{0}\right)$, and $f^{-1}\left(w_{0}\right)=z_{0}$.
- $f^{-1}(w)^{\prime}=1 / f^{\prime}\left(f^{-1}(w)\right)$.

$$
f(z)=w
$$

Example

Let $f(z)=\tan z, \quad z \neq\left(k+\frac{1}{2}\right) \pi$. Then $f^{\prime}(z)=(\cos z)^{-2} \neq 0$.
Local inverse for $\tan (z)$ exists at all z_{0} in domain of $\tan (z)$.
For any local inverse:

$$
\left(\tan ^{-1}\right)^{\prime}(w)=\cos ^{2}\left(\tan ^{-1}(w)\right)=\frac{1}{1+w^{2}}
$$

Observe: if $|w|<1$ then

$$
\frac{1}{1+w^{2}}=\sum_{k=0}^{\infty}(-1)^{k} w^{2 k}
$$

Principal branch of $\tan ^{-1}$: take $w_{0}=0, \tan ^{-1}(0)=0$. Then

$$
\tan ^{-1}(w)=\sum_{k=0}^{\infty}(-1)^{k} \frac{w^{2 k+1}}{2 k+1} \quad \text { on } D_{\delta}(0), \text { for some } \delta>0
$$

Claim: $\quad \tan \left(\sum_{k=0}^{\infty}(-1)^{k} \frac{w^{2 k+1}}{2 k+1}\right)=w \quad$ for all $|w|<1$.
Proof. The function $\tan \left(\sum_{k=0}^{\infty}(-1)^{k} \frac{w^{2 k+1}}{2 k+1}\right)-w$ is analytic on $D_{1}(0)$, vanishes on $D_{\delta}(0)$ some $\delta>0$, so vanishes on $D_{1}(0)$.

Suppose: $g(w)$ is analytic on a connected open set $E \ni\{0\}$, $g(0)=0, g^{\prime}(w)=\frac{1}{1+w^{2}}$. Then: $\tan (g(w))=w$, all $w \in E$.

Proof. $g(w)$ equals the above series for $\tan ^{-1}(w)$ on $D_{\delta}(0)$, some $\delta>0$, so $\tan (g(w))=w$ on $D_{\delta}(0)$. E is connected, $\tan (g(w))$ is analytic, so $\tan (g(w))=w$ on all of E.

An explicit formula for $\tan ^{-1}(w)$

$$
\tan z=-i \frac{e^{i z}-e^{-i z}}{e^{i z}+e^{-i z}}=-i \frac{e^{2 i z}-1}{e^{2 i z}+1}
$$

Let $u=e^{2 i z}$. Then $\tan z=w$ is equivalent to

$$
\frac{u-1}{u+1}=i w \quad \text { which gives } \quad u=\frac{i-w}{i+w}
$$

$$
\tan z=w \quad \Leftrightarrow \quad e^{2 i z}=\frac{i-w}{i+w} \quad \Leftrightarrow \quad z=\frac{1}{2 i} \log \left(\frac{i-w}{i+w}\right)
$$

$$
\tan ^{-1}(w)=\frac{1}{2 i} \log \left(\frac{i-w}{i+w}\right)
$$

- If $w \notin\{i,-i\}$, there exist infinite many choices for $\tan ^{-1}(w)$.
- Values of \log differ by $2 \pi k i$; values of $\tan ^{-1}(w)$ differ by $k \pi$.

