Lecture 13: Inverse Functions II

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Assume $f(z_0) = w_0$, and $f'(z_0) \neq 0$. Then there exists $f^{-1}(w)$:

• The function $f^{-1}(w)$ is analytic on $D_{\delta}(w_0)$, some $\delta > 0$.

•
$$f(f^{-1}(w)) = w$$
 for $w \in D_{\delta}(w_0)$, and $f^{-1}(w_0) = z_0$.

•
$$f^{-1}(w)' = 1/f'(f^{-1}(w))$$

Example

Let
$$f(z) = \tan z$$
, $z \neq (k + \frac{1}{2})\pi$. Then $f'(z) = (\cos z)^{-2} \neq 0$.

Local inverse for tan(z) exists at all z_0 in domain of tan(z).

For any local inverse:

$$(\tan^{-1})'(w) = \cos^2(\tan^{-1}(w)) = \frac{1}{1+w^2}$$

Observe: if
$$|w| < 1$$
 then $\frac{1}{1+w^2} = \sum_{k=0}^{\infty} (-1)^k w^{2k}$

Principal branch of \tan^{-1} : take $w_0 = 0$, $\tan^{-1}(0) = 0$. Then $\tan^{-1}(w) = \sum_{k=0}^{\infty} (-1)^k \frac{w^{2k+1}}{2k+1}$ on $D_{\delta}(0)$, for some $\delta > 0$.

Claim:
$$\tan\left(\sum_{k=0}^{\infty} (-1)^k \frac{w^{2k+1}}{2k+1}\right) = w \text{ for all } |w| < 1.$$

Proof. The function
$$\tan\left(\sum_{k=0}^{\infty}(-1)^k\frac{w^{2k+1}}{2k+1}\right) - w$$
 is analytic

on $D_1(0)$, vanishes on $D_{\delta}(0)$ some $\delta > 0$, so vanishes on $D_1(0)$.

Suppose:
$$g(w)$$
 is analytic on a connected open set $E \ni \{0\}$,
 $g(0) = 0, g'(w) = \frac{1}{1 + w^2}$. **Then**: $tan(g(w)) = w$, all $w \in E$.

Proof. g(w) equals the above series for $\tan^{-1}(w)$ on $D_{\delta}(0)$, some $\delta > 0$, so $\tan(g(w)) = w$ on $D_{\delta}(0)$. *E* is connected, $\tan(g(w))$ is analytic, so $\tan(g(w)) = w$ on all of *E*.

An explicit formula for $tan^{-1}(w)$

$$\tan z = -i \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} = -i \frac{e^{2iz} - 1}{e^{2iz} + 1}$$

Let $u = e^{2iz}$. Then $\tan z = w$ is equivalent to

$$\frac{u-1}{u+1} = iw$$
 which gives $u = \frac{i-w}{i+w}$

$$\tan z = w \quad \Leftrightarrow \quad e^{2iz} = \frac{i-w}{i+w} \quad \Leftrightarrow \quad z = \frac{1}{2i} \log \left(\frac{i-w}{i+w} \right)$$

$$\tan^{-1}(w) = \frac{1}{2i} \log\left(\frac{i-w}{i+w}\right)$$

- If $w \notin \{i, -i\}$, there exist infinite many choices for $\tan^{-1}(w)$.
- Values of log differ by $2\pi ki$; values of $\tan^{-1}(w)$ differ by $k\pi$.