Lecture 14: Simple Connectivity and tan⁻¹

Hart Smith

Department of Mathematics University of Washington, Seattle

Math 428, Winter 2020

Theorem

If $E \subset \mathbb{C}$ is open and connected, and f(z) is analytic on E, then f(z) = F'(z) for an analytic F on E if and only if $\int_{\gamma} f(z) \, dz = 0$ for every closed path γ contained in E.

Proof. (\Rightarrow) If f = F' then $\int_{\gamma} f(z) dz = 0$ by Fund. Thm. Calc.

 (\Leftarrow) If $\int_{\mathbb{R}} f(z) dz = 0$ all closed γ , we fix $z_0 \in E$, $c_0 \in \mathbb{C}$, and let

$$F(z) = c_0 + \int_{z_0}^z f(w) \, dw$$

where $\int_{z_0}^{z_0}$ denotes integration along **any** path from z_0 to z.

By the proof of Theorem 2.6.1, F'(z) = f(z).

Definition

We say a connected open set $E \subset \mathbb{C}$ is simply connected if, for every closed path γ in E, we have $\operatorname{ind}_{\gamma}(z) = 0$ for all $z \notin E$.

- That is: a closed path in E can't wind around any $z \notin E$.
- By Cauchy's Theorem, if *E* is simply connected then for all closed γ in *E*, all analytic functions *f* on *E*, $\int_{\gamma} f(z) dz = 0$

Corollary

If $E \subset \mathbb{C}$ is simply connected, and f is analytic on E, then f has an anti-derivative on E: f(z) = F'(z) for some analytic F on E, and F is determined on E up to a constant.

If we fix $z_0 \in E$, the general anti-derivative F of f is given by

$$F(z) = c_0 + \int_{z_0}^z f(w) dw, \qquad c_0 \in \mathbb{C}.$$

Example: $E = \mathbb{C} \setminus (-\infty, 0]$ is simply connected.

Proof. We need verify $\operatorname{ind}_{\gamma}(z) = 0$ for all closed paths γ in E, for all $z \in \mathbb{C} \setminus E$, that is, for $z \in (-\infty, 0]$.

Key fact: entire half-line $(-\infty,0]$ lies in unbounded component of $\mathbb{C}\setminus\{\gamma\}$, since it's connected (and unbounded), therefore $\operatorname{ind}_{\gamma}(z)=0$ on the entire set $z\in(-\infty,0]$.

- $f(z) = \frac{1}{2}$ has anti-derivative on $\mathbb{C} \setminus (-\infty, 0]$, $F(z) = \log z$.
- Principal branch of $\log z$ is the unique anti-derivative of $\frac{1}{z}$ on $\mathbb{C} \setminus (-\infty, 0]$ that vanishes at z = 1.

Example of interest for $tan^{-1}(w)$:

$$E = \mathbb{C} \setminus \{[i, +i\infty) \cup [-i, -i\infty)\}$$

is simply connected.

• There exists an analytic function
$$g(w)$$
 on E such that

$$g(0) = 0, \quad g'(w) = \frac{1}{1 + w^2}$$

• By last lecture, tan(g(w)) = w, so $g(w) = tan^{-1}(w)$.

Principal branch of $tan^{-1}(w)$ is:

$$\tan^{-1}(w) = \frac{1}{2i} \log \left(\frac{i-w}{i+w} \right)$$
 with principal branch of log.

- This is defined on the set $\left\{w: \frac{i-w}{i+w} \notin (-\infty,0], \ w \neq \pm i\right\}$
- The "cut" set is the set of $w: u = \frac{i w}{i + w} \in (-\infty, 0]$.
- Write $w = i \frac{u-1}{u+1}$. Then $\begin{cases} u \in (-\infty, -1) : & w \in (i, +i\infty) \\ u \in (-1, 0) : & w \in (-i, -i\infty) \end{cases}$

Principal branch of $\tan^{-1}(w)$ maps $\mathbb{C} \setminus \{[i, +i\infty) \cup [-i, -i\infty)\}$ to the vertical strip $-\frac{\pi}{2} < \text{Re}(z) < \frac{\pi}{2}$.

Complex plane representation of $z \rightarrow \tan z$

