Lecture 14: Simple Connectivity and $\tan ^{-1}$

Hart Smith

Department of Mathematics
University of Washington, Seattle

Math 428, Winter 2020

Theorem

If $E \subset \mathbb{C}$ is open and connected, and $f(z)$ is analytic on E, then $f(z)=F^{\prime}(z)$ for an analytic F on E if and only if $\int_{\gamma} f(z) d z=0$ for every closed path γ contained in E.

Proof. (\Rightarrow) If $f=F^{\prime}$ then $\int_{\gamma} f(z) d z=0$ by Fund. Thm. Calc.
(\Leftarrow) If $\int_{\gamma} f(z) d z=0$ all closed γ, we fix $z_{0} \in E, c_{0} \in \mathbb{C}$, and let

$$
F(z)=c_{0}+\int_{z_{0}}^{z} f(w) d w
$$

where $\int_{z_{0}}^{z}$ denotes integration along any path from z_{0} to z.
By the proof of Theorem 2.6.1, $F^{\prime}(z)=f(z)$.

Definition

We say a connected open set $E \subset \mathbb{C}$ is simply connected if, for every closed path γ in E, we have $\operatorname{ind}_{\gamma}(z)=0$ for all $z \notin E$.

- That is: a closed path in E can't wind around any $z \notin E$.
- By Cauchy's Theorem, if E is simply connected then for all closed γ in E, all analytic functions f on $E, \int_{\gamma} f(z) d z=0$

Corollary

If $E \subset \mathbb{C}$ is simply connected, and f is analytic on E, then f has an anti-derivative on $E: f(z)=F^{\prime}(z)$ for some analytic F on E, and F is determined on E up to a constant.

If we fix $z_{0} \in E$, the general anti-derivative F of f is given by

$$
F(z)=c_{0}+\int_{z_{0}}^{z} f(w) d w, \quad c_{0} \in \mathbb{C}
$$

Example: $E=\mathbb{C} \backslash(-\infty, 0]$ is simply connected.
Proof. We need verify $\operatorname{ind}_{\gamma}(z)=0$ for all closed paths γ in E, for all $z \in \mathbb{C} \backslash E$, that is, for $z \in(-\infty, 0]$.

Key fact: entire half-line $(-\infty, 0$] lies in unbounded component of $\mathbb{C} \backslash\{\gamma\}$, since it's connected (and unbounded), therefore $\operatorname{ind}_{\gamma}(z)=0$ on the entire set $z \in(-\infty, 0]$.

- $f(z)=\frac{1}{z}$ has anti-derivative on $\mathbb{C} \backslash(-\infty, 0], F(z)=\log z$.
- Principal branch of $\log z$ is the unique anti-derivative of $\frac{1}{z}$ on $\mathbb{C} \backslash(-\infty, 0]$ that vanishes at $z=1$.

Example of interest for $\tan ^{-1}(w)$:

$E=\mathbb{C} \backslash\{[i,+i \infty) \cup[-i,-i \infty)\}$
is simply connected.

- There exists an analytic function $g(w)$ on E such that

$$
g(0)=0, \quad g^{\prime}(w)=\frac{1}{1+w^{2}}
$$

- By last lecture, $\tan (g(w))=w$, so $g(w)=\tan ^{-1}(w)$.

Principal branch of $\tan ^{-1}(w)$ is:

$$
\tan ^{-1}(w)=\frac{1}{2 i} \log \left(\frac{i-w}{i+w}\right) \quad \text { with principal branch of } \log .
$$

- This is defined on the set $\left\{w: \frac{i-w}{i+w} \notin(-\infty, 0], w \neq \pm i\right\}$
- The "cut" set is the set of $w: u=\frac{i-w}{i+w} \in(-\infty, 0]$.
- Write $w=i \frac{u-1}{u+1}$. Then $\left\{\begin{aligned} u \in(-\infty,-1): & w \in(i,+i \infty) \\ u \in(-1,0): & w \in(-i,-i \infty)\end{aligned}\right.$

Principal branch of $\tan ^{-1}(w)$ maps $\mathbb{C} \backslash\{[i,+i \infty) \cup[-i,-i \infty)\}$ to the vertical strip $-\frac{\pi}{2}<\operatorname{Re}(z)<\frac{\pi}{2}$.

Complex plane representation of $z \rightarrow \tan z$

